These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 4430681)

  • 41. Ketogenesis in isolated rat liver mitochondria. I. Relationships with the citric acid cycle and with the mitochondrial energy state.
    Lopes-Cardozo M; van den Bergh SG
    Biochim Biophys Acta; 1972; 283(1):1-15. PubMed ID: 4643352
    [No Abstract]   [Full Text] [Related]  

  • 42. Importance of experimental conditions in evaluating the malonyl-CoA sensitivity of liver carnitine acyltransferase. Studies with fed and starved rats.
    McGarry JD; Foster DW
    Biochem J; 1981 Nov; 200(2):217-23. PubMed ID: 7340831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of metabolism of free fatty acid by isolated perfused livers from male and female rats.
    Soler-Argilaga C; Heimberg M
    J Lipid Res; 1976 Nov; 17(6):605-15. PubMed ID: 1032892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on the effects of tricaprylin on gluconeogenesis and ketogenesis in isolated perfused liver.
    Ingebretsen WR; Wagle SR
    Proc Soc Exp Biol Med; 1974 Nov; 147(2):578-80. PubMed ID: 4438372
    [No Abstract]   [Full Text] [Related]  

  • 45. Effects of octanoate and oleate on energy metabolism in the perfused rat liver.
    Debeer LJ; Mannaerts G; De Schepper PJ
    Eur J Biochem; 1974 Sep; 47(3):591-600. PubMed ID: 4434997
    [No Abstract]   [Full Text] [Related]  

  • 46. Studies on the relationship between ketogenesis and pyruvate oxidation in isolated rat liver mitochondria.
    Dennis SC; DeBuysere M; Scholz R; Olson MS
    J Biol Chem; 1978 Apr; 253(7):2229-37. PubMed ID: 632266
    [No Abstract]   [Full Text] [Related]  

  • 47. Enhancement of mitochondrial carnitine and carnitine acylcarnitine translocase-mediated transport of fatty acids into liver mitochondria under ketogenic conditions.
    Parvin R; Pande SV
    J Biol Chem; 1979 Jun; 254(12):5423-9. PubMed ID: 447661
    [No Abstract]   [Full Text] [Related]  

  • 48. Metabolism of octanoyl- and palmitoylcarnitine by intact rat hepatocytes.
    Brass EP
    Biochim Biophys Acta; 1989 Jun; 1003(2):209-12. PubMed ID: 2730893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The metabolism of oleic acid by the perfused rat liver in experimental diabetes induced by antiinsulin serum.
    Woodside WF; Heimberg M
    Metabolism; 1978 Dec; 27(12):1763-77. PubMed ID: 723630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on the mechanism of action of the hypoglycemic agent, 2-(3-methylcinnamylhydrazono)-propionate (BM 42.304).
    Deaciuc IV; Kühnle HF; Strauss KM; Schmidt FH
    Biochem Pharmacol; 1983 Nov; 32(22):3405-12. PubMed ID: 6651864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of oleic, arachidonic and 5,8,11,14-nonadecatetraenoic acids on lipid secretion and ketogenesis in perfused rat liver.
    Ikeda I; Murakami J; Oka T; Sugano M; Yamada H; Shimizu S; Kawashima H; Shinmen Y; Amachi T
    Lipids; 1991 Jan; 26(1):27-30. PubMed ID: 1904969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ketogenesis in the living rat followed by 13C-NMR spectroscopy. Infusion of [1,3-13C]octanoate.
    Pahl-Wostl C; Seelig J
    Biol Chem Hoppe Seyler; 1987 Mar; 368(3):205-14. PubMed ID: 3593540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The regulation of ketogenesis from oleic acid and the influence of antiketogenic agents.
    McGarry JD; Foster DW
    J Biol Chem; 1971 Oct; 246(20):6247-53. PubMed ID: 5127428
    [No Abstract]   [Full Text] [Related]  

  • 54. Thyroid hormone-induced changes in gluconeogenesis and ketogenesis in perfused rat liver.
    Bartels PD; Sestoft L
    Biochim Biophys Acta; 1980 Nov; 633(1):56-67. PubMed ID: 7448206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of hepatic fatty acid metabolism. The activities of mitochondrial and microsomal acyl-CoA:sn-glycerol 3-phosphate O-acyltransferase and the concentrations of malonyl-CoA, non-esterified and esterified carnitine, glycerol 3-phosphate, ketone bodies and long-chain acyl-CoA esters in livers of fed or starved pregnant, lactating and weaned rats.
    Zammit VA
    Biochem J; 1981 Jul; 198(1):75-83. PubMed ID: 7326003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The regulation of hepatic triglyceride metabolism by free fatty acids.
    Kohout M; Kohoutova B; Heimberg M
    J Biol Chem; 1971 Aug; 246(16):5067-74. PubMed ID: 4328243
    [No Abstract]   [Full Text] [Related]  

  • 57. Effects of insulin treatment on ketone body production and carnitine-palmitoyl-transferase (CPT) activity in the isolated perfused liver from streptozotocin diabetic rats.
    Tessari P; Meneghel A; Avogaro A; Nosadini R; Del Prato S; Tiengo A
    Horm Metab Res; 1985 Jun; 17(6):271-4. PubMed ID: 3160642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glucagon and the permissive action of fatty acids in hepatic gluconeogenesis.
    Fröhlich J; Wieland O
    Eur J Biochem; 1971 Apr; 19(4):557-62. PubMed ID: 5578609
    [No Abstract]   [Full Text] [Related]  

  • 59. Interactions between vasopressin and glucagon on ketogenesis and oleate metabolism in isolated hepatocytes from fed rats.
    Williamson DH; Ilic V; Tordoff AF; Ellington EV
    Biochem J; 1980 Feb; 186(2):621-4. PubMed ID: 7378069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hepatic lipid metabolism in experimental diabetes. V. The effect of concentration of oleate on metabolism of triglycerides and on ketogenesis.
    Van Harken DR; Dixon CW; Heimberg M
    J Biol Chem; 1969 May; 244(9):2278-85. PubMed ID: 5783834
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.