BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 4433531)

  • 1. Effect of 2,3-diphosphoglycerate and inositol hexaphosphate on the stability of normal sickle hemoglobins.
    Adachi K; Asakura T
    Biochemistry; 1974 Nov; 13(24):4976-82. PubMed ID: 4433531
    [No Abstract]   [Full Text] [Related]  

  • 2. Calorimetric studies of hemoglobin function, the binding of 2,3-diphosphoglycerate and inositol hexaphosphate to human hemoglobin A.
    Nelson DP; Miller WD; Kiesow LA
    J Biol Chem; 1974 Aug; 249(15):4770-5. PubMed ID: 4846747
    [No Abstract]   [Full Text] [Related]  

  • 3. Ligand-specific Bohr effect in haemoglobins.
    Sick H; Gersonde K
    Eur J Biochem; 1974 Jun; 45(1):313-20. PubMed ID: 4422311
    [No Abstract]   [Full Text] [Related]  

  • 4. Kinetics of co-operative ligand binding in proteins: the effects of organic phosphates on hemoglobin oxygenation.
    Bansil R; Herzfeld J; Stanley HE
    J Mol Biol; 1976 May; 103(1):89-126. PubMed ID: 957427
    [No Abstract]   [Full Text] [Related]  

  • 5. The mechanism of interaction of red cell organic phosphates with hemoglobin.
    Benesch RE; Benesch R
    Adv Protein Chem; 1974; 28():211-37. PubMed ID: 4364924
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanical stability of hemoglobin subunits: an abnormality in betaS-subunits of sickle hemoglobin.
    Asakura T; Adachi K; Sono M; Friedman S; Schwartz E
    Biochem Biophys Res Commun; 1974 Apr; 57(3):780-6. PubMed ID: 4827832
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanism of cooperative oxygen binding to hemoglobin: equilibrium aspects.
    Chay TR; Brillhart DK
    Biochemistry; 1974 Oct; 13(22):4579-85. PubMed ID: 4425649
    [No Abstract]   [Full Text] [Related]  

  • 8. The reaction of cyanate with the alpha and beta subunits in hemoglobin. Effects of oxygenation, phosphates, and carbon dioxide.
    Jensen M; Nathan DG; Bunn HF
    J Biol Chem; 1973 Dec; 248(23):8057-63. PubMed ID: 4752946
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetic and equilibrium properties of hemoglobin Kansas.
    Gibson QH; Riggs A; Imamura T
    J Biol Chem; 1973 Sep; 248(17):5976-86. PubMed ID: 4726294
    [No Abstract]   [Full Text] [Related]  

  • 10. Nuclear relaxation and gelation study of the interaction of organophosphates with human normal and sickle hemoglobins. In vitro gelation of sickle oxyhemoglobin in the presence of inositol hexaphosphate.
    Gupta RK
    J Biol Chem; 1976 Nov; 251(21):6815-22. PubMed ID: 977598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The binding of 2,3-diphosphoglycerate as a conformational probe of human hemoglobins.
    Caldwell PR; Nagel RL
    J Mol Biol; 1973 Mar; 74(4):605-11. PubMed ID: 4729524
    [No Abstract]   [Full Text] [Related]  

  • 12. Relations between oxygen saturation and aggregation of sickle-cell hemoglobin.
    Minton AP
    J Mol Biol; 1976 Feb; 100(4):519-42. PubMed ID: 1255727
    [No Abstract]   [Full Text] [Related]  

  • 13. Nucleation-controlled aggregation of deoxyhemoglobin S. Effect of organic phosphates on the kinetics of aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Matarasso SL; Asakura T
    Biochim Biophys Acta; 1980 Aug; 624(2):372-7. PubMed ID: 7417483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The deoxygenation kinetics of hemoglobin partially saturated with carbon monoxide. Effect of 2,3-diphosphoglycerate.
    Salhany JM; Mathers DH; Eliot RS
    J Biol Chem; 1972 Nov; 247(21):6985-90. PubMed ID: 4681058
    [No Abstract]   [Full Text] [Related]  

  • 15. Polymerization of oxygenated and deoxygenated bullfrog hemoglobins.
    Araki T; Okazaki T; Kajita A; Shukuya R
    Biochim Biophys Acta; 1974 Jun; 351(2):427-36. PubMed ID: 4546145
    [No Abstract]   [Full Text] [Related]  

  • 16. High resolution proton magnetic resonance study of the two quaternary states in fully ligated hemoglobin Kansas.
    Ogawa S; Mayer A; Shulman RG
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1485-91. PubMed ID: 4639808
    [No Abstract]   [Full Text] [Related]  

  • 17. Asymmetrical hemoglobin hybrids. An approach to the study of subunit interactions.
    Bunn HF; McDonough M
    Biochemistry; 1974 Feb; 13(5):988-93. PubMed ID: 4855919
    [No Abstract]   [Full Text] [Related]  

  • 18. Allosteric transition and ligand binding in hemoglobin Chesapeake.
    Gibson QH; Nagel RL
    J Biol Chem; 1974 Nov; 249(22):7255-9. PubMed ID: 4436307
    [No Abstract]   [Full Text] [Related]  

  • 19. Relative affinity of hemoglobin S and hemoglobin A for carbon monoxide and oxygen.
    Rodkey FL; O'Neal JD; Collison HA; Uddin DE
    Clin Chem; 1974; 20(1):83-4. PubMed ID: 4809477
    [No Abstract]   [Full Text] [Related]  

  • 20. Cyanate and hemoglobin-S: effect of carbamylation of the alpha and beta chain alpha-amino groups on O2 affinity.
    Rossi F; Perrella M; Bresciani D; Guglielmo G; Rossi-Bernardi L
    FEBS Lett; 1975 Jul; 55(1):99-101. PubMed ID: 237798
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.