These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 4433623)

  • 1. [Letter: Free radical oxidation of biological membrane lipids. II. Mechanism of control of autoxidation of linoleic acid by reduced glutathione].
    Glushchenko NN; Obraztsov VV; Orlov SN; Danilov VS
    Biofizika; 1974; 19(1):193-6. PubMed ID: 4433623
    [No Abstract]   [Full Text] [Related]  

  • 2. [Free radical oxidation of biological membrane lipids. I. Auto-oxidation of higher unsaturated fatty acids in various conditions].
    Kozlov IuP; Glushchenko NN; Obraztsov VV; Orlov SN; Kagan VE
    Biofizika; 1973; 18(6):1031-6. PubMed ID: 4805511
    [No Abstract]   [Full Text] [Related]  

  • 3. [Free-radical oxidation of biological membrane lipids. V. Fluorescence of fatty acids and phospholipids].
    Orlov SN; Danilov VS; Malkov IuA; Rebrov VG
    Biofizika; 1975; 20(2):228-32. PubMed ID: 1148296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Free radical oxidation of biological membrane lipids. IV. iron salts in peroxidation catalysis of linoleic acid].
    Obraztsov VV; Glushchenko NN; Orlov SN; Danilov VS
    Biofizika; 1975; 20(1):93-7. PubMed ID: 1111629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Free-radical oxidation of biological membrane lipids. VI. Nature of linoleic acid chemiluminescence].
    Orlov SN; Danilov VS; Khrushchev AA; Shvetsov IuN
    Biofizika; 1975; 20(4):628-32. PubMed ID: 1201295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spectral changes during the initial stage of uninhibited and inhibited autoxidation of methyloleate and methyllinoleate].
    Yanishlieva N; Popov A
    Nahrung; 1972; 16(3):187-95. PubMed ID: 4660059
    [No Abstract]   [Full Text] [Related]  

  • 7. Antioxidant mechanism studies on ferulic acid: identification of oxidative coupling products from methyl ferulate and linoleate.
    Masuda T; Yamada K; Maekawa T; Takeda Y; Yamaguchi H
    J Agric Food Chem; 2006 Aug; 54(16):6069-74. PubMed ID: 16881718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Free radical oxidation of biological membrane lipids. III. Peroxide oxidation of phospholipids in model experiments].
    Glushchenko NN; Obraztsov VV; Orlov SN; Shestakova SV; Danilov VS
    Biofizika; 1974; 19(3):461-4. PubMed ID: 4419117
    [No Abstract]   [Full Text] [Related]  

  • 9. [Protection of essential fatty acids by vitamin E].
    Turchetto E; Pignatti C
    Acta Vitaminol Enzymol; 1982; 4(3):267-77. PubMed ID: 6293292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of tocopherols on autoxidation of thin film methyl linoleate (author's transl)].
    Shimojo T; Otsuki K
    Rinsho Byori; 1981 Mar; 29(3):233-7. PubMed ID: 7265514
    [No Abstract]   [Full Text] [Related]  

  • 11. [Peculiarities in the kinetics of the initial stage of autoxidation of acid esters. 4. Theoretical curves of hydroperoxide accumulation during methyloleate and methyllinoleate autoxidation and autocatalytic character of the process].
    Yanishlieva N
    Nahrung; 1973; 17(3):307-12. PubMed ID: 4725501
    [No Abstract]   [Full Text] [Related]  

  • 12. Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi.
    Rontani JF; Jameson I; Christodoulou S; Volkman JK
    Phytochemistry; 2007 Mar; 68(6):913-24. PubMed ID: 17258251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of monohydroxy-polyenic fatty acids from lipid peroxides by a glutathione peroxidase.
    Christophersen BO
    Biochim Biophys Acta; 1968 Sep; 164(1):35-46. PubMed ID: 5680294
    [No Abstract]   [Full Text] [Related]  

  • 15. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives.
    Rubbo H; Parthasarathy S; Barnes S; Kirk M; Kalyanaraman B; Freeman BA
    Arch Biochem Biophys; 1995 Dec; 324(1):15-25. PubMed ID: 7503550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ca2+ transport and free-radical oxidation of lipids in sarcoplasmic reticulum membranes].
    Kozlov IuP; Ritov VB; Kagan VE
    Dokl Akad Nauk SSSR; 1973 Oct; 212(5):1239-42. PubMed ID: 4751340
    [No Abstract]   [Full Text] [Related]  

  • 17. Lipid-phenolic radical adducts as a plausible mechanism of "plant ageing" pigment formation.
    Merzlyak MN; Kovrizhnih VA
    Gen Physiol Biophys; 1984 Dec; 3(6):497-505. PubMed ID: 6530137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol is more susceptible to oxidation than linoleates in cultured cells under oxidative stress induced by selenium deficiency and free radicals.
    Saito Y; Yoshida Y; Niki E
    FEBS Lett; 2007 Sep; 581(22):4349-54. PubMed ID: 17716664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoepoxide production from linoleic acid by cytochrome c in the presence of cardiolipin.
    Iwase H; Takatori T; Nagao M; Iwadate K; Nakajima M
    Biochem Biophys Res Commun; 1996 May; 222(1):83-9. PubMed ID: 8630079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.
    Crean C; Geacintov NE; Shafirovich V
    Chem Res Toxicol; 2008 Feb; 21(2):358-73. PubMed ID: 18159932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.