These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 4433881)
21. Distribution of purple photosynthetic bacteria in wetland and woodland habitats of central and northern Minnesota. Burke ME; Gorham E; Pratt DC J Bacteriol; 1974 Feb; 117(2):826-33. PubMed ID: 4590487 [TBL] [Abstract][Full Text] [Related]
22. [Biological oxidation of iron and manganese]. Brantner H Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(5):412-26. PubMed ID: 5535929 [No Abstract] [Full Text] [Related]
23. Reduction of fensulfothion and accumulation of the product, fensulfothion sulfide, by selected microbes. Timms P; MacRae IC Bull Environ Contam Toxicol; 1983 Jul; 31(1):112-5. PubMed ID: 6224524 [No Abstract] [Full Text] [Related]
24. Reduction of fensulfothion to fensulfothion sulfide by Klebsiella pneumoniae. Wood PA; MacRae IC Appl Environ Microbiol; 1977 Sep; 34(3):247-50. PubMed ID: 143907 [TBL] [Abstract][Full Text] [Related]
25. H Hou N; Xia Y; Wang X; Liu H; Liu H; Xun L Biodegradation; 2018 Dec; 29(6):511-524. PubMed ID: 30141069 [TBL] [Abstract][Full Text] [Related]
26. [Is there a correlation between iron-reducing and nitrate-reducing flora of the soil?]. Ottow JC; Ottow H Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(3):314-8. PubMed ID: 4918802 [No Abstract] [Full Text] [Related]
28. [Microbiological processes of hydrogen sulfide oxidation in Lake Repnoe (Slavonic Lakes)]. Gorlenko VM; Chebotarev EN; Kachalkin VI Mikrobiologiia; 1973; 42(4):723-8. PubMed ID: 4791163 [No Abstract] [Full Text] [Related]
29. Case Study: Microbial Ecology and Forensics of Chinese Drywall-Elemental Sulfur Disproportionation as Primary Generator of Hydrogen Sulfide. Tomei Torres FA Microb Ecol; 2018 Jul; 76(1):37-48. PubMed ID: 28639032 [TBL] [Abstract][Full Text] [Related]
30. [Microbiological hydrogen sulfide oxidation processes in Lake Veisovo (the Slavonic Lakes)]. Gorlenko VM; Chebotarev EN; Kachalkin VI Mikrobiologiia; 1974; 43(3):530-4. PubMed ID: 4849188 [No Abstract] [Full Text] [Related]
31. [Interaction between chlopyrifos and microorganisms in soils]. Liu X; You M; Liao J; Wei Y Ying Yong Sheng Tai Xue Bao; 2004 Jul; 15(7):1174-6. PubMed ID: 15506093 [TBL] [Abstract][Full Text] [Related]
32. Enhanced microbial degradation of carbofuran in soils with histories of Furadan use. Felsot A; Maddox JV; Bruce W Bull Environ Contam Toxicol; 1981 Jun; 26(6):781-8. PubMed ID: 7260449 [No Abstract] [Full Text] [Related]
33. [Microbiologic hydrogen sulfide formation in the fresh karst lakes, Bol'shoi Kichier and Chernyi Kichier]. Chebotarev EN Mikrobiologiia; 1974; 43(6):1105-10. PubMed ID: 4281047 [No Abstract] [Full Text] [Related]
34. Ore leaching by bacteria. Lundgren DG; Silver M Annu Rev Microbiol; 1980; 34():263-83. PubMed ID: 7002025 [No Abstract] [Full Text] [Related]
35. [Role of microorganisms in the turnover of sulfur in Lake Pomiaretskoe]. Gorlenko VM; Chebotarev EN; Kachalkin VI Mikrobiologiia; 1974; 43(5):908-14. PubMed ID: 4444565 [No Abstract] [Full Text] [Related]
36. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Ohmoto H; Kakegawa T; Lowe DR Science; 1993 Oct; 262():555-7. PubMed ID: 11539502 [TBL] [Abstract][Full Text] [Related]
37. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production. Kumaraswamy R; Ebert S; Gray MR; Fedorak PM; Foght JM Appl Microbiol Biotechnol; 2011 Mar; 89(6):2027-38. PubMed ID: 21057944 [TBL] [Abstract][Full Text] [Related]
40. Control of microbial sulfide production by limiting sulfate dispersal in a water-injected oil field. Shen Y; Agrawal A; Suri NK; An D; Voordouw JK; Clark RG; Jack TR; Miner K; Pederzolli R; Benko A; Voordouw G J Biotechnol; 2018 Jan; 266():14-19. PubMed ID: 29197544 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]