These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 4435020)

  • 1. Noradrenergic neurons: morphine inhibition of spontaneous activity.
    Korf J; Bunney BS; Aghajanian GK
    Eur J Pharmacol; 1974 Feb; 25(2):165-9. PubMed ID: 4435020
    [No Abstract]   [Full Text] [Related]  

  • 2. Self-stimulation of noradrenergic cell group (A6) in locus coeruleus of rats.
    Ritter S; Stein L
    J Comp Physiol Psychol; 1973 Dec; 85(3):443-52. PubMed ID: 4586874
    [No Abstract]   [Full Text] [Related]  

  • 3. D & L amphetamine stereoisomers: comparative potencies in affecting the firing of central dopaminergic and noradrenergic neurons.
    Bunney BS; Walters JR; Kuhar MJ; Roth RH; Aghajanian GK
    Psychopharmacol Commun; 1975; 1(2):177-90. PubMed ID: 1223998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total neurochemical lesion of noradrenergic neurons of the locus ceruleus does not alter either naloxone-precipitated or spontaneous opiate withdrawal nor does it influence ability of clonidine to reverse opiate withdrawal.
    Caillé S; Espejo EF; Reneric JP; Cador M; Koob GF; Stinus L
    J Pharmacol Exp Ther; 1999 Aug; 290(2):881-92. PubMed ID: 10411605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings: Influence of morphine on the release of noradrenaline from brain slices.
    Montel H; Weber F
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R67. PubMed ID: 4276618
    [No Abstract]   [Full Text] [Related]  

  • 6. The antagonism by naloxone of agents that interact with dopaminergic neurones.
    Dettmar PW; Cowan A; Walter DS
    Biochem Soc Trans; 1978; 6(5):1004-6. PubMed ID: 744302
    [No Abstract]   [Full Text] [Related]  

  • 7. Single neurone studies of opioid tolerance and dependence at the ventrobasal thalamic level in an experimental model of clinical pain, the arthritic rat.
    Kayser V; Attal N; Chen YL; Guilbaud G
    Brain Res; 1991 Jul; 554(1-2):130-8. PubMed ID: 1933295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of opioid-sensitive neurons in the anteroventral third ventricle region of polydipsic inbred mice in vitro.
    Hattori Y; Katafuchi T; Koizumi K
    Brain Res; 1991 Jan; 538(2):283-8. PubMed ID: 1672830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of oxytocin neurones by systemic cholecystokinin is unchanged by morphine dependence or withdrawal excitation in the rat.
    Brown CH; Munro G; Murphy NP; Leng G; Russell JA
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):787-94. PubMed ID: 8930844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphetamine-induced inhibition of central noradrenergic neurons: a pharmacological analysis.
    Engberg G; Svensson TH
    Life Sci; 1979 Jun; 24(24):2245-53. PubMed ID: 502745
    [No Abstract]   [Full Text] [Related]  

  • 11. The effects of some drugs on an evoked response sensitive to tetrahydrocannabinols.
    Boyd ES; Boyd EH; Brown LE
    J Pharmacol Exp Ther; 1974 Jun; 189(3):748-58. PubMed ID: 4210510
    [No Abstract]   [Full Text] [Related]  

  • 12. The action of norepinephrine in the rat hippocampus. III. Hippocampal cellular responses to locus coeruleus stimulation in the awake rat.
    Segal M; Bloom FE
    Brain Res; 1976 May; 107(3):499-511. PubMed ID: 178410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective antagonism of the error-increasing effect of morphine by naloxone in a repeated-acquisition task.
    Thompson DM; Moerschbaecher JM
    J Exp Anal Behav; 1981 Nov; 36(3):371-80. PubMed ID: 7310262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative effects of sciatic nerve stimulation, blood pressure, and morphine on the activity of A5 and A6 pontine noradrenergic neurons.
    Guyenet PG; Byrum CE
    Brain Res; 1985 Feb; 327(1-2):191-201. PubMed ID: 3986498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of neurons in the locus coeruleus of the rat: inhibition by ethanol.
    Pohorecky LA; Brick J
    Brain Res; 1977 Aug; 131(1):174-9. PubMed ID: 884543
    [No Abstract]   [Full Text] [Related]  

  • 16. Morphine enhancement of acetylcholine release from the brain in unanaesthetized cats.
    Mullin WJ; Phillis JW; Pinsky C
    Eur J Pharmacol; 1973 Apr; 22(1):117-9. PubMed ID: 4706877
    [No Abstract]   [Full Text] [Related]  

  • 17. Attenuation of acute and chronic effects of morphine by the imidazoline receptor ligand 2-(2-benzofuranyl)-2-imidazoline in rat locus coeruleus neurons.
    Ruiz-Durántez E; Torrecilla M; Pineda J; Ugedo L
    Br J Pharmacol; 2003 Feb; 138(3):494-500. PubMed ID: 12569074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the involvement of excitatory amino acid pathways in the development of precipitated withdrawal from acute and chronic morphine: an in vivo voltammetric study in the rat locus coeruleus.
    Hong M; Milne B; Jhamandas K
    Brain Res; 1993 Sep; 623(1):131-41. PubMed ID: 8221081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of morphine tolerance and dependence in the nucleus paragigantocellularis neurons.
    Saiepour MH; Semnanian S; Fathollahi Y
    Eur J Pharmacol; 2001 Jan; 411(1-2):85-92. PubMed ID: 11137862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings: Antagonism of the effects of iontophoretically applied (+)-amphetamine by chlorpromazine on single neurones.
    Boakes RJ; Bradley PB; Candy JM
    Br J Pharmacol; 1973 Sep; 49(1):175P-176P. PubMed ID: 4787549
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.