These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 4436272)

  • 1. Kinetic studies on the hydrolyses of alpha-, beta-, and gamma-cyclodextrins by Taka-amylase A.
    Suetsugu N; Koyama S; Takeo K; Kuge T
    J Biochem; 1974 Jul; 76(1):57-63. PubMed ID: 4436272
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of cyclodextrins with fluorescent probes and its application to kinetic studies of amylase.
    Kondo H; Nakatani H; Hiromi K
    J Biochem; 1976 Feb; 79(2):393-405. PubMed ID: 5431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic difference between hydrolyses of gamma-cyclodextrin by human salivary and pancreatic alpha-amylases.
    Marshall JJ; Miwa I
    Biochim Biophys Acta; 1981 Sep; 661(1):142-7. PubMed ID: 6170334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A glucose-forming amylase in human liver.
    Tsujino K; Yoshimura M; Umeki K; Minamiura N; Yamamoto T
    J Biochem; 1974 Dec; 76(6):1235-42. PubMed ID: 4457545
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanism of porcine pancreatic alpha-amylase. Inhibition of amylose and maltopentaose hydrolysis by alpha-, beta- and gamma-cyclodextrins.
    Koukiekolo R; Desseaux V; Moreau Y; Marchis-Mouren G; Santimone M
    Eur J Biochem; 2001 Feb; 268(3):841-8. PubMed ID: 11168426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate equation for amylase-catalyzed hydrolysis, transglycosylation and condensation of linear oligosaccharides and amylose.
    Matsuno R; Suganuma T; Fujimori H; Nakanishi K; Hiromi K; Kamikubo T
    J Biochem; 1978 Feb; 83(2):385-94. PubMed ID: 632229
    [No Abstract]   [Full Text] [Related]  

  • 7. [Specificity of the action of neutral alpha-oligoglusidases from the rabbit liver].
    Ushakova NA; Lukomskaia LS
    Biokhimiia; 1974; 39(4):732-9. PubMed ID: 4441568
    [No Abstract]   [Full Text] [Related]  

  • 8. Structures of multi-branched dextrins produced by saccharifyiing alpha-amylase from starch.
    Umeki K; Yamamoto T
    J Biochem; 1975 Nov; 78(5):897-903. PubMed ID: 814118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference spectroscopic study of the interaction between Taka-amylase A and substrates.
    Kunikata T; Nitta Y; Watanabe T
    J Biochem; 1978 May; 83(5):1435-42. PubMed ID: 306996
    [No Abstract]   [Full Text] [Related]  

  • 10. Starch degradation by the mould Trichoderma viride. I. The mechanism of starch degradation.
    Schellart JA; Visser FM; Zandstra T; Middelhoven WJ
    Antonie Van Leeuwenhoek; 1976; 42(3):229-38. PubMed ID: 10832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slowly digestible property of highly branched α-limit dextrins produced by 4,6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo.
    Ryu JJ; Li X; Lee ES; Li D; Lee BH
    Carbohydr Polym; 2022 Jan; 275():118685. PubMed ID: 34742415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the mechanism of action of Taka-amylase A1 on linear oligosaccharides by product analysis and computer simulation.
    Suganuma T; Matsuno R; Ohnishi M; Hiromi K
    J Biochem; 1978 Aug; 84(2):293-316. PubMed ID: 308947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of periplasmic alpha-amylase from Xanthomonas campestris K-11151.
    Abe J; Onitsuka N; Nakano T; Shibata Y; Hizukuri S; Entani E
    J Bacteriol; 1994 Jun; 176(12):3584-8. PubMed ID: 8206836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the substrate specificity of Taka-amylase A1. XIV. Preparation of 6-deoxy-6-halogenomaltotrioses and their hydrolysis by Taka-amylase A.
    Omichi K; Matsushima Y
    J Biochem; 1978 Oct; 84(4):835-41. PubMed ID: 309468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis of aryl beta-maltotriosides by sweet potato beta-amylase and soybean beta-amylase.
    Suetsugu N; Takeo K; Sanai Y; Kuge T
    J Biochem; 1978 Feb; 83(2):473-8. PubMed ID: 147271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calorimetric studies on hydrolysis of glucosides. 3. Heats of hydrolysis of alpha-1,4 glucosidic linkages involved in higer glucosides.
    Takahashi K; Hiromi K; Ono S
    J Biochem; 1965 Sep; 58(3):255-8. PubMed ID: 5861332
    [No Abstract]   [Full Text] [Related]  

  • 17. The pathway of maltodextrin metabolism in Pseudomonas stutzeri.
    Wöber G
    Hoppe Seylers Z Physiol Chem; 1973 Jan; 354(1):75-82. PubMed ID: 4807790
    [No Abstract]   [Full Text] [Related]  

  • 18. Aleppo tannin: structural analysis and salivary amylase inhibition.
    Zajácz A; Gyémánt G; Vittori N; Kandra L
    Carbohydr Res; 2007 Apr; 342(5):717-23. PubMed ID: 17217934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of enzyme mixtures to retard bread crumb firming.
    León AE; Durán E; Benedito De Barber C
    J Agric Food Chem; 2002 Mar; 50(6):1416-9. PubMed ID: 11879013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of substrate on the electrophoretic mobility of alpha-amylase.
    MacGregor AW
    Anal Biochem; 1977 May; 79(1-2):605-9. PubMed ID: 869200
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.