These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 4437553)

  • 1. Interaction of chromatic mechanisms in detection.
    Krauskopf J
    Mod Probl Ophthalmol; 1974; 13(0):92-7. PubMed ID: 4437553
    [No Abstract]   [Full Text] [Related]  

  • 2. [Participation of the green-sensitive retinal receptor of the cat in color discrimination].
    Kezeli AR; Maksimov VV; Lomashvili NI; Khomeriki MS; Tskhvediani NG
    Fiziol Zh SSSR Im I M Sechenova; 1987 Jul; 73(7):883-9. PubMed ID: 3666201
    [No Abstract]   [Full Text] [Related]  

  • 3. Is it possible to isolate fundamental cone mechanisms with Wald's method of chromatic adaptation?
    Norren DV; Bouman MA
    Mod Probl Ophthalmol; 1976; 17():27-32. PubMed ID: 972608
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of layered scene representations in color appearance.
    Wollschläger D; Anderson BL
    Curr Biol; 2009 Mar; 19(5):430-5. PubMed ID: 19268595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achromatic parvocellular contrast gain in normal and color defective observers: Implications for the evolution of color vision.
    Lutze M; Pokorny J; Smith VC
    Vis Neurosci; 2006; 23(3-4):611-6. PubMed ID: 16962004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rod-cone interaction with homogeneous field stimulation.
    van den Berg TJ
    Mod Probl Ophthalmol; 1978; 19():341-3. PubMed ID: 723864
    [No Abstract]   [Full Text] [Related]  

  • 7. [The results of research on visual fatigue in children by determining the perception time of a sequential color contrast].
    Serdiuchenko VI
    Oftalmol Zh; 1989; (5):275-8. PubMed ID: 2586971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associating color appearance with the cone chromaticity space.
    Cao D; Pokorny J; Smith VC
    Vision Res; 2005 Jul; 45(15):1929-34. PubMed ID: 15820511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength discrimination in the leopard frog: a reexamination.
    Fite KV; Soukup J; Carey RG
    Brain Behav Evol; 1978; 15(5-6):405-14. PubMed ID: 310705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation.
    Mullen KT; Dumoulin SO; McMahon KL; de Zubicaray GI; Hess RF
    Eur J Neurosci; 2007 Jan; 25(2):491-502. PubMed ID: 17284191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual detection analysed in terms of luminance and chromatic signals.
    King-Smith PE
    Nature; 1975 May; 255(5503):69-70. PubMed ID: 1128669
    [No Abstract]   [Full Text] [Related]  

  • 12. Detection and identification of monochromatic stimuli under chromatic contrast.
    Kerr L
    Vision Res; 1974 Nov; 14(11):1095-105. PubMed ID: 4428616
    [No Abstract]   [Full Text] [Related]  

  • 13. Isolation of chromatic and achromatic mechanisms: a new approach.
    Sharanjeet-Kaur ; Kulikowski JJ; Carden D
    Ophthalmic Physiol Opt; 1998 Jan; 18(1):49-56. PubMed ID: 9666910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of reduced illumination on the results obtained with some diagnostic colour vision tests in subjects with congenital red-green defects.
    Aarnisalo E
    Acta Ophthalmol Suppl; 1980; 142():1-66. PubMed ID: 6259881
    [No Abstract]   [Full Text] [Related]  

  • 15. [Proceedings: Differentiation of intensity coding and chromatic coding in tectal cells of the pigeon].
    Jassik-Gerschenfeld D; Lange R; Ropert N
    J Physiol (Paris); 1973; 67(3):347A. PubMed ID: 4804799
    [No Abstract]   [Full Text] [Related]  

  • 16. Dependence of peripheral spectral sensitivity on exposure time.
    Ronchi L
    Mod Probl Ophthalmol; 1974; 13(0):98-102. PubMed ID: 4437554
    [No Abstract]   [Full Text] [Related]  

  • 17. Latencies for chromatic and achromatic visual mechanisms.
    Bowen RW
    Vision Res; 1981; 21(10):1457-66. PubMed ID: 7331242
    [No Abstract]   [Full Text] [Related]  

  • 18. The cone inputs to the unique-hue mechanisms.
    Wuerger SM; Atkinson P; Cropper S
    Vision Res; 2005 Nov; 45(25-26):3210-23. PubMed ID: 16087209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color stimuli perception in presence of light scattering.
    Ozolinsh M; Colomb M; Ikaunieks G; Karitans V
    Vis Neurosci; 2006; 23(3-4):597-601. PubMed ID: 16962002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do rods influence the hue of foveal stimuli?
    Buck SL; Thomas LP; Hillyer N; Samuelson EM
    Vis Neurosci; 2006; 23(3-4):519-23. PubMed ID: 16961989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.