These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 4437632)

  • 1. Sulphydryl groups as a new molecular probe at the alpha1 beta1 interface in haemoglobin using Fourier transform infrared spectroscopy.
    Alben JO; Bare GH; Bromberg PA
    Nature; 1974 Dec; 252(5485):736-8. PubMed ID: 4437632
    [No Abstract]   [Full Text] [Related]  

  • 2. Ligand-dependent heme-protein interactions in human hemoglobin studied by Fourier transform infrared spectroscopy. Effects of quaternary structure on alpha chain tertiary structure measured at the alpha-104(G11) cysteine-SH.
    Alben JO; Bare GH
    J Biol Chem; 1980 May; 255(9):3892-7. PubMed ID: 7372657
    [No Abstract]   [Full Text] [Related]  

  • 3. Sulfhydryl groups in hemoglobin. A new molecular probe at the alpha1 beta 1 interface studied by Fourier transform infrared spectroscopy.
    Bare GH; Alben JO; Bromberg PA
    Biochemistry; 1975 Apr; 14(8):1578-83. PubMed ID: 235959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular conformation and cooperativity in hemoglobin.
    Raftery MA; Huestis WH
    Ann N Y Acad Sci; 1973 Dec; 222():40-55. PubMed ID: 4522436
    [No Abstract]   [Full Text] [Related]  

  • 5. Implication of the alpha 1 beta 1 interface in the hemoglobin affinity changes. A comparative study between normal and San Diego fully ligated hemoglobins.
    el Antri S; Zentz C; Alpert B
    Eur J Biochem; 1989 Jan; 179(1):165-8. PubMed ID: 2917557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational sensitivity of beta-93 cysteine SH to ligation of hemoglobin observed by FT-IR spectroscopy.
    Moh PP; Fiamingo FG; Alben JO
    Biochemistry; 1987 Sep; 26(19):6243-9. PubMed ID: 3689772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared evidence for similar metal-dioxygen bonding in iron and cobalt oxyhemoglobins.
    Maxwell JC; Caughey WS
    Biochem Biophys Res Commun; 1974 Oct; 60(4):1309-14. PubMed ID: 4417843
    [No Abstract]   [Full Text] [Related]  

  • 8. Protein structure by Fourier transform infrared spectroscopy: second derivative spectra.
    Susi H; Byler DM
    Biochem Biophys Res Commun; 1983 Aug; 115(1):391-7. PubMed ID: 6615537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis.
    PERUTZ MF; ROSSMANN MG; CULLIS AF; MUIRHEAD H; WILL G; NORTH AC
    Nature; 1960 Feb; 185(4711):416-22. PubMed ID: 18990801
    [No Abstract]   [Full Text] [Related]  

  • 10. Cross correlation of titrating histidines in oxy- and deoxyhaemoglobin; an NMR study.
    Brown FF; Campbell ID
    FEBS Lett; 1976 Jun; 65(3):322-6. PubMed ID: 955067
    [No Abstract]   [Full Text] [Related]  

  • 11. Coupling of a microfluidic mixer to a Fourier-transform infrared spectrometer for protein-conformation studies.
    Prim D; Crelier S; Segura JM
    Chimia (Aarau); 2011; 65(10):815-6. PubMed ID: 22054139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared evidence for the mode of binding of oxygen to iron of myoglobin from heart muscle.
    Maxwell JC; Volpe JA; Barlow CH; Caughey WS
    Biochem Biophys Res Commun; 1974 May; 58(1):166-71. PubMed ID: 4831065
    [No Abstract]   [Full Text] [Related]  

  • 13. Elucidation of the mode of binding of oxygen to iron in oxyhemoglobin by in frared spectroscopy.
    Barlow CH; Maxwell JC; Wallace WJ; Caughey WS
    Biochem Biophys Res Commun; 1973 Nov; 55(1):91-6. PubMed ID: 4787738
    [No Abstract]   [Full Text] [Related]  

  • 14. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes.
    Susi H; Byler DM
    Methods Enzymol; 1986; 130():290-311. PubMed ID: 3773736
    [No Abstract]   [Full Text] [Related]  

  • 15. A comparison of functional and structural consequences of the tyrosine B10 and glutamine E7 motifs in two invertebrate hemoglobins (Ascaris suum and Lucina pectinata).
    Peterson ES; Huang S; Wang J; Miller LM; Vidugiris G; Kloek AP; Goldberg DE; Chance MR; Wittenberg JB; Friedman JM
    Biochemistry; 1997 Oct; 36(42):13110-21. PubMed ID: 9335574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes of bacteriorhodopsin detected by Fourier transform infrared difference spectroscopy.
    Rothschild KJ; Zagaeski M; Cantore WA
    Biochem Biophys Res Commun; 1981 Nov; 103(2):483-9. PubMed ID: 7332553
    [No Abstract]   [Full Text] [Related]  

  • 17. Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy.
    Cooper CE; Springett R
    Philos Trans R Soc Lond B Biol Sci; 1997 Jun; 352(1354):669-76. PubMed ID: 9232854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Infrared spectrophotometry determination of oxyhemoglobin-hemoglobin ratio in blood].
    BRUCKNER J
    Schweiz Med Wochenschr; 1956 Sep; 86(37, Suppl):1057-9. PubMed ID: 13360233
    [No Abstract]   [Full Text] [Related]  

  • 19. Reactivities of the sulphydryl groups of dog hemoglobin.
    Okonjo K; Taiwo A; Balogun M; Ekisola OB
    Biochim Biophys Acta; 1979 Jan; 576(1):30-8. PubMed ID: 760809
    [No Abstract]   [Full Text] [Related]  

  • 20. Fourier transform infrared spectroscopy on external perturbations inducing secondary structure changes of hemoglobin.
    Lu R; Li WW; Katzir A; Raichlin Y; Mizaikoff B; Yu HQ
    Analyst; 2016 Oct; 141(21):6061-6067. PubMed ID: 27704088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.