These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4440769)

  • 1. Independence of lactate oxidation from net Na+ reabsorption in dog kidney in vivo.
    Brand PH; Cohen JJ; Bignall MC
    Am J Physiol; 1974 Dec; 227(6):1255-62. PubMed ID: 4440769
    [No Abstract]   [Full Text] [Related]  

  • 2. Steady-state glucose oxidation by dog kidney in vivo: relation to Na+ reabsorption.
    Garza-Quintero R; Cohen JJ; Brand PH; Kook YJ
    Am J Physiol; 1975 Feb; 228(2):549-55. PubMed ID: 235847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate metabolism following severe hemorrhage in the conscious dog.
    Wiener R; Spitzer JJ
    Am J Physiol; 1974 Jul; 227(1):58-62. PubMed ID: 4843355
    [No Abstract]   [Full Text] [Related]  

  • 4. Lactate metabolism in the isolated perfused rat kidney: relations to renal function and gluconeogenesis.
    Cohen JJ; Little JR
    J Physiol; 1976 Feb; 255(2):399-414. PubMed ID: 1255526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen requirement of bicarbonate-dependent sodium reabsorption in the dog kidney.
    Mathisen O; Monclair T; Kiil F
    Am J Physiol; 1980 Mar; 238(3):F175-80. PubMed ID: 6245585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic support for renal sodium reabsorption.
    Cohen JJ
    Med Clin North Am; 1975 May; 59(3):523-38. PubMed ID: 1092930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption.
    Kurtzman NA; White MG; Rogers PW; Flynn JJ
    J Clin Invest; 1972 Jan; 51(1):127-33. PubMed ID: 5007043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the oxidation rates of glucose and lactate in relation to support of Na+ reabsorption.
    Cohen JJ; Gregg CM; Merkens LS; Brand PH; Garza-Quintero R; Pashley DH; Black AJ
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():418-23. PubMed ID: 616375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal CO2 production from glutamine and lactate as a function of arterial perfusion pressure in dog.
    Baruch SB; Eun CK; MacLeod M; Pitts RF
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):4235-8. PubMed ID: 1069312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate oxidation and inhibition of sodium transport in the isolated perfused rat kidney.
    Franke H; Malyusz M; Weiss C
    Curr Probl Clin Biochem; 1975; 4():169-74. PubMed ID: 127691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial lactate oxidation and release in the dog in vivo.
    Leunissen RL; Piatnek-Leunissen DA
    Pflugers Arch; 1973 Nov; 344(3):261-70. PubMed ID: 4589656
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of different doses of acetylsalicylic acid on renal oxygen consumption.
    Berg KJ; Bergan A
    Scand J Clin Lab Invest; 1977 May; 37(3):235-41. PubMed ID: 616049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO2 production from plasma free fatty acids by the intact functioning kidney of the dog.
    Park HC; Leal-Pinto E; MacLeod MB; Pitts RF
    Am J Physiol; 1974 Nov; 227(5):1192-8. PubMed ID: 4440761
    [No Abstract]   [Full Text] [Related]  

  • 14. Renal sodium reabsorption and oxygen consumption after unilateral splanchnicotomy in the dog.
    Szalay L; Bencsáth P; Takács L
    Pflugers Arch; 1974; 349(4):359-67. PubMed ID: 4472285
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of carbon dioxide on renal blood flow.
    Norman JN; MacIntyre J; Shearer JR; Craigen IM; Smith G
    Am J Physiol; 1970 Sep; 219(3):672-6. PubMed ID: 5450869
    [No Abstract]   [Full Text] [Related]  

  • 16. Lactate oxidation and sodium reabsorption by dog kidney in vivo.
    Díes F; Valdez JM; Vilet R; Garza R
    Am J Physiol; 1981 Apr; 240(4):F343-51. PubMed ID: 7223892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocardial lactate oxidation in situ and the effect thereon of reduced coronary flow.
    Griggs DM; Nagano S; Lipana JG; Novack P
    Am J Physiol; 1966 Aug; 211(2):335-40. PubMed ID: 5921095
    [No Abstract]   [Full Text] [Related]  

  • 18. Oxygen consumption of nonfiltering dog kidneys.
    Sadowski J; Toruń L
    Pflugers Arch; 1974; 349(4):351-8. PubMed ID: 4472227
    [No Abstract]   [Full Text] [Related]  

  • 19. Redistribution of renal cortical blood flow during elevated ureteral pressure.
    Bay WH; Stein JH; Rector JB; Osgood RW; Ferris TF
    Am J Physiol; 1972 Jan; 222(1):33-7. PubMed ID: 5060223
    [No Abstract]   [Full Text] [Related]  

  • 20. The influence of renal function on lactate and glucose metabolism.
    Bartlett S; Espinal J; Janssens P; Ross BD
    Biochem J; 1984 Apr; 219(1):73-8. PubMed ID: 6721865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.