These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 4441397)

  • 21. Superoxide radical production by allopurinol and xanthine oxidase.
    Galbusera C; Orth P; Fedida D; Spector T
    Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of superoxide and singlet oxygen in lipid peroxidation promoted by xanthine oxidase.
    Pederson TC; Aust SD
    Biochem Biophys Res Commun; 1973 Jun; 52(3):1071-8. PubMed ID: 4351045
    [No Abstract]   [Full Text] [Related]  

  • 23. Is singlet oxygen a substrate for superoxide dismutase? No.
    Michelson AM
    FEBS Lett; 1974 Aug; 44(1):97-100. PubMed ID: 4212110
    [No Abstract]   [Full Text] [Related]  

  • 24. Reactions of Adriamycin with haemoglobin. Superoxide dismutase indirectly inhibits reactions of the Adriamycin semiquinone.
    Bates DA; Winterbourn CC
    Biochem J; 1982 Apr; 203(1):155-60. PubMed ID: 6285890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The generation of superoxide anion in the reaction of tetrahydropteridines with molecular oxygen.
    Nishikimi M
    Arch Biochem Biophys; 1975 Jan; 166(1):273-9. PubMed ID: 235890
    [No Abstract]   [Full Text] [Related]  

  • 26. One-electron transfer reactions in biochemical systems. VII. Two types of electron outlets in milk xanthine oxidase.
    Nakamura M; Yamazaki I
    Biochim Biophys Acta; 1973 Dec; 327(2):247-56. PubMed ID: 4360425
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of flavonols on the generation of superoxide anion radicals by xanthine oxidase and stimulated neutrophils.
    Selloum L; Reichl S; Müller M; Sebihi L; Arnhold J
    Arch Biochem Biophys; 2001 Nov; 395(1):49-56. PubMed ID: 11673865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis.
    Fielden EM; Roberts PB; Bray RC; Lowe DJ; Mautner GN; Rotilio G; Calabrese L
    Biochem J; 1974 Apr; 139(1):49-60. PubMed ID: 4377100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P-450.
    Guengerich FP; Ballou DP; Coon MJ
    Biochem Biophys Res Commun; 1976 Jun; 70(3):951-6. PubMed ID: 938535
    [No Abstract]   [Full Text] [Related]  

  • 33. Cytochrome c enhancement of singlet molecular oxygen production by the NADPH-dependent adrenodoxin reductase-adrenodoxin system: the role of singlet oxygen in damaging adrenal mitochondrial membranes.
    Goda K; Chu J; Kimura T; Schaap AP
    Biochem Biophys Res Commun; 1973 Jun; 52(4):1300-6. PubMed ID: 4146221
    [No Abstract]   [Full Text] [Related]  

  • 34. The role of superoxide and hydroperoxide in the reductive activation of tryptophan-2,3-dioxygenase.
    Brady FO; Forman HJ; Feigelson P
    J Biol Chem; 1971 Dec; 246(23):7119-24. PubMed ID: 5167018
    [No Abstract]   [Full Text] [Related]  

  • 35. Generation of sanazole nitro radicals by xanthine oxidase.
    Shchepetkin IA
    Biochemistry (Mosc); 1998 Dec; 63(12):1378-84. PubMed ID: 9916154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoactivation of pseudomonad L-tryptophan oxygenase by electron ejection from its substrate, L-tryptophan.
    Brady FO; Feigelson P
    Arch Biochem Biophys; 1973 Jun; 156(2):745-50. PubMed ID: 4718791
    [No Abstract]   [Full Text] [Related]  

  • 37. Generation of the superoxide radical during autoxidation of oxymyoglobin.
    Gotoh T; Shikama K
    J Biochem; 1976 Aug; 80(2):397-9. PubMed ID: 187577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scavenging of neutrophil-derived superoxide anion by 1-hydroxyphenazine, a phenazine derivative associated with chronic Pseudomonas aeruginosa infection: relevance to cystic fibrosis.
    Muller M
    Biochim Biophys Acta; 1995 Dec; 1272(3):185-9. PubMed ID: 8541351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantitative test for superoxide radicals produced in biological systems.
    Kuthan H; Ullrich V; Estabrook RW
    Biochem J; 1982 Jun; 203(3):551-8. PubMed ID: 6288006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanisms of hemoglobin autoxidation. Evidence for proton-assisted nucleophilic displacement of superoxide by anions.
    Wallace WJ; Maxwell JC; Caughey WS
    Biochem Biophys Res Commun; 1974 Apr; 57(4):1104-10. PubMed ID: 4830750
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.