These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 444158)

  • 1. An investigation of the auditory frequency-following responses as compared to cochlear potentials.
    Hou SM; Lipscomb DM
    Arch Otorhinolaryngol; 1979; 222(3):235-40. PubMed ID: 444158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Electrical responses recorded from the round window of the cat cochlea].
    Bakaĭ EA; Chaĭka SP
    Neirofiziologiia; 1979; 11(2):151-7. PubMed ID: 440488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generators of the frequency-following response in the guinea pig.
    Yamada O; Marsh RR; Potsic WP
    Otolaryngol Head Neck Surg (1979); 1980; 88(5):613-8. PubMed ID: 7443268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear microphonics and the initiation of spikes in the auditory nerve: correlation of single-unit data with neural and receptor potentials recorded from the round window.
    Ruggero MA; Robles L; Rich NC
    J Acoust Soc Am; 1986 May; 79(5):1491-8. PubMed ID: 3711448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basilar membrane mechanics at the base of the chinchilla cochlea. II. Responses to low-frequency tones and relationship to microphonics and spike initiation in the VIII nerve.
    Ruggero MA; Robles L; Rich NC
    J Acoust Soc Am; 1986 Nov; 80(5):1375-83. PubMed ID: 3782616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The auditory neurophonic: basic properties.
    Snyder RL; Schreiner CE
    Hear Res; 1984 Sep; 15(3):261-80. PubMed ID: 6501114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal correspondence of intracranial, cochlear and scalp-recorded human auditory nerve action potentials.
    Pratt H; Martin WH; Schwegler JW; Rosenwasser RH; Rosenberg SI; Flamm ES
    Electroencephalogr Clin Neurophysiol; 1992; 84(5):447-55. PubMed ID: 1382954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that inner hair cells are the major source of cochlear summating potentials.
    Zheng XY; Ding DL; McFadden SL; Henderson D
    Hear Res; 1997 Nov; 113(1-2):76-88. PubMed ID: 9387987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adrenal insufficiency and electrophysiological measures of auditory sensitivity.
    Conn FW; Mast TE
    Am J Physiol; 1973 Dec; 225(6):1430-6. PubMed ID: 4760456
    [No Abstract]   [Full Text] [Related]  

  • 11. Threshold sensitivity and frequency selectivity measured with round window whole nerve action potentials in the awake, restrained chinchilla.
    Spagnoli SD; Saunders JC
    Otolaryngol Head Neck Surg; 1987 Jan; 96(1):99-105. PubMed ID: 3118303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origins of the scalp recorded frequency-following response in the cat.
    Gardi J; Merzenich M; McKean C
    Audiology; 1979; 18(5):358-81. PubMed ID: 496719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebellar actions on cochlear microphonics and on auditory nerve action potential.
    Velluti R; Crispino L
    Brain Res Bull; 1979; 4(5):621-4. PubMed ID: 487218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of cochlear potentials in the neonatal gerbil.
    McGuirt JP; Schmiedt RA; Schulte BA
    Hear Res; 1995 Apr; 84(1-2):52-60. PubMed ID: 7642455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faster recovery in central than in peripheral auditory system following a reversible cochlear deafferentation.
    Zheng XY; McFadden SL; Henderson D
    Neuroscience; 1998 Jul; 85(2):579-86. PubMed ID: 9622254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between intracranially recorded potentials from the human auditory nerve and scalp recorded auditory brainstem responses (ABR).
    Møller AR; Jannetta PJ
    Scand Audiol; 1982; 11(1):33-40. PubMed ID: 7178801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the origin of the auditory averaged evoked responses recorded from the scalp in the anesthetized cat.
    Kevanishvili ZS; Kajaia OA
    Acta Otolaryngol; 1973; 76(2):98-108. PubMed ID: 4771958
    [No Abstract]   [Full Text] [Related]  

  • 18. Instrumental perforation of the round window. Animal experiments using cochleography and ERA.
    Lamm H; Lehnhardt E; Lamm K
    Acta Otolaryngol; 1984; 98(5-6):454-61. PubMed ID: 6524341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonsurgical recording of human auditory nerve action potentials and cochlear microphonics.
    Coats AC; Dickey JR
    Ann Otol Rhinol Laryngol; 1970 Aug; 79(4):844-52. PubMed ID: 5526995
    [No Abstract]   [Full Text] [Related]  

  • 20. [Electrophysiologic characteristics of rapid auditory adaptation].
    Sagalovich BM; Shipova LI
    Fiziol Zh SSSR Im I M Sechenova; 1976; 62(6):872-7. PubMed ID: 1010086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.