BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4442426)

  • 1. Hamster brown-adipose-tissue mitochondria. The chloride permeability of the inner membrane under respiring conditions, the influence of purine nucleotides.
    Nicholls DG
    Eur J Biochem; 1974 Dec; 49(3):585-93. PubMed ID: 4442426
    [No Abstract]   [Full Text] [Related]  

  • 2. The bioenergetics of brown adipose tissue mitochondria.
    Nicholls DG
    FEBS Lett; 1976 Jan; 61(2):103-110. PubMed ID: 765149
    [No Abstract]   [Full Text] [Related]  

  • 3. Brown-adipose-tissue mitochondria. The influence of albumin and nucleotides on passive ion permeabilities.
    Nicholls DG; Lindberg O
    Eur J Biochem; 1973 Sep; 37(3):523-30. PubMed ID: 4777251
    [No Abstract]   [Full Text] [Related]  

  • 4. Brown-adipose-tissue mitochondria: the regulation of the 32000-Mr uncoupling protein by fatty acids and purine nucleotides.
    Rial E; Poustie A; Nicholls DG
    Eur J Biochem; 1983 Dec; 137(1-2):197-203. PubMed ID: 6317384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hamster brown-adipose-tissue mitochondria. The role of fatty acids in the control of the proton conductance of the inner membrane.
    Heaton GM; Nicholis DG
    Eur J Biochem; 1976 Aug; 67(2):511-7. PubMed ID: 964256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific interaction of fatty acyl-CoA esters with brown adipose tissue mitochondria.
    Strieleman PJ; Shrago E
    Am J Physiol; 1985 Jun; 248(6 Pt 1):E699-705. PubMed ID: 2408479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hamster brown-adipose-tissue mitochondria. Purine nucleotide control of the ion conductance of the inner membrane, the nature of the nucleotide binding site.
    Nicholls DG
    Eur J Biochem; 1976 Feb; 62(2):223-8. PubMed ID: 1253787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial from hamster brown-adipose tissue. Regulation of respiration in vitro by variations in volume of the matrix compartment.
    Nicholls DG; Grav HJ; Lindberg O
    Eur J Biochem; 1972 Dec; 31(3):526-33. PubMed ID: 4650156
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for two distinct chloride uniport pathways in brown adipose tissue mitochondria.
    Jezek P; Beavis AD; Diresta DJ; Cousino RN; Garlid KD
    Am J Physiol; 1989 Dec; 257(6 Pt 1):C1142-8. PubMed ID: 2481977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of GDP on Ca2+ uptake by mitochondria of brown adipose tissue from lean and genetically obese (ob/ob) mice.
    Trayhurn P; Fraser DR
    Biochem J; 1983 Jul; 214(1):171-5. PubMed ID: 6615462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hamster brown-adipose-tissue mitochondria. The control of respiration and the proton electrochemical potential gradient by possible physiological effectors of the proton conductance of the inner membrane.
    Nicholls DG
    Eur J Biochem; 1974 Dec; 49(3):573-83. PubMed ID: 4442425
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the energy state of isolated brown adipose tissue mitochondria. The cytochrome b complex as a probe of the energy state of the mitochondrial inner membrane.
    Pedersen JI; Flatmark T
    Biochim Biophys Acta; 1972 Aug; 275(2):135-47. PubMed ID: 5053270
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular mechanism of uncoupling in brown adipose tissue mitochondria. The non-identity of proton and chloride conducting pathways.
    Kopecký J; Guerrieri F; Jezek P; Drahota Z; Houstĕk J
    FEBS Lett; 1984 May; 170(1):186-90. PubMed ID: 6327374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of uncoupling protein in brown-fat mitochondria by purine nucleotides. Chemical modification by diazobenzenesulfonate.
    Kopecký J; Jezek P; Drahota Z; Houstĕk J
    Eur J Biochem; 1987 May; 164(3):687-94. PubMed ID: 3032627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brown adipose tissue mitochondria of cold-acclimated rats: change in characteristics of purine nucleotide control of the proton electrochemical gradient.
    Desautels M; Himms-Hagen J
    Can J Biochem; 1981 Aug; 59(8):619-25. PubMed ID: 6271370
    [No Abstract]   [Full Text] [Related]  

  • 16. Variations in energization parameters and proton conductance induced by cold adaptation and essential fatty acid deficiency in mitochondria of brown adipose tissue in the rat.
    Goubern M; Yazbeck J; Chapey MF; Diolez P; Moreau F
    Biochim Biophys Acta; 1990 Feb; 1015(2):334-40. PubMed ID: 2297513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acids as acute regulators of the proton conductance of hamster brown-fat mitochondria.
    Locke RM; Rial E; Scott ID; Nicholls DG
    Eur J Biochem; 1982 Dec; 129(2):373-80. PubMed ID: 6295765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of proton leakage across mitochondrial inner membranes and its relation to protonmotive force.
    Nicholls DG; Rial E
    Methods Enzymol; 1989; 174():85-94. PubMed ID: 2561174
    [No Abstract]   [Full Text] [Related]  

  • 19. The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation.
    Nicholls DG; Bernson VS; Heaton GM
    Experientia Suppl; 1978; 32():89-93. PubMed ID: 348493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of guanine nucleotides to the outer surface of the inner membrane of guinea pig brown fat mitochondria in correlation with the thermogenic activity of the tissue.
    Rafael J; Heldt HW
    FEBS Lett; 1976 Apr; 63(2):304-8. PubMed ID: 1261699
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.