These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 4443791)

  • 1. Differences in the charge distribution of glycerol-extracted muscle fibers in rigor, relaxation, and contraction.
    Pemrick SM; Edwards C
    J Gen Physiol; 1974 Nov; 64(5):551-67. PubMed ID: 4443791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization of tryptophan fluorescence from single striated muscle fibers. A molecular probe of contractile state.
    Dos Remedios CG; Millikan RG; Morales MF
    J Gen Physiol; 1972 Jan; 59(1):103-20. PubMed ID: 4332133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Donnan potentials from the A- and I-bands of glycerinated and chemically skinned muscles, relaxed and in rigor.
    Bartels EM; Elliott GF
    Biophys J; 1985 Jul; 48(1):61-76. PubMed ID: 4016210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stiffness of glycerinated rabbit psoas fibers in the rigor state. Filament-overlap relation.
    Tawada K; Kimura M
    Biophys J; 1984 Mar; 45(3):593-602. PubMed ID: 6713072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigor tension development in glycerinated rabbit psoas fibers at high salt concentrations.
    Tawada K; Emoto Y
    Adv Exp Med Biol; 1988; 226():219-26. PubMed ID: 3407515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-dependence of Donnan potentials in glycerinated rabbit psoas muscle in rigor, at and beyond filament overlap; a role for titin in the contractile process.
    Coomber SJ; Bartels EM; Elliott GF
    Cell Calcium; 2011 Jul; 50(1):91-7. PubMed ID: 21663965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linking studies related to the location of the rigor compliance in glycerinated rabbit psoas fibers: is the SII portion of the cross-bridge compliant?
    Tawada K; Kimura M
    Adv Exp Med Biol; 1984; 170():385-96. PubMed ID: 6741707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation.
    Borejdo J; Putnam S
    Biochim Biophys Acta; 1977 Mar; 459(3):578-95. PubMed ID: 849438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial forces within muscle fibers in rigor.
    Maughan DW; Godt RE
    J Gen Physiol; 1981 Jan; 77(1):49-64. PubMed ID: 6970793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ATP concentration and pH on rigor tension development and dissociation of rigor complex in glycerinated rabbit psoas muscle fiber.
    Izumi K; Ito T; Fukazawa T
    Biochim Biophys Acta; 1981 Dec; 678(3):364-72. PubMed ID: 7317457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The binding of calcium to glycerinated muscle fibers in rigor. The effect of filament overlap.
    Fuchs F
    Biochim Biophys Acta; 1977 Apr; 491(2):523-31. PubMed ID: 403955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrostatic compression in glycerinated rabbit muscle fibers.
    Ranatunga KW; Fortune NS; Geeves MA
    Biophys J; 1990 Dec; 58(6):1401-10. PubMed ID: 2275960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of paratropomyosin on the increase in sarcomere length of rigor-shortened skeletal muscles.
    Yamanoue M; Takahashi K
    J Biochem; 1988 May; 103(5):843-7. PubMed ID: 3182754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent probes of the orientation of myosin regulatory light chains in relaxed, rigor, and contracting muscle.
    Ling N; Shrimpton C; Sleep J; Kendrick-Jones J; Irving M
    Biophys J; 1996 Apr; 70(4):1836-46. PubMed ID: 8785344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative studies on the polarization optical properties of striated muscle. I. Birefringence changes of rabbit psoas muscle in the transition from rigor to relaxed state.
    Toylor DL
    J Cell Biol; 1976 Mar; 68(3):497-511. PubMed ID: 16016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness of skinned rabbit psoas fibers in MgATP and MgPPi solution.
    Brenner B; Chalovich JM; Greene LE; Eisenberg E; Schoenberg M
    Biophys J; 1986 Oct; 50(4):685-91. PubMed ID: 3022835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial stiffness of frog skinned muscle fibers in relaxed and rigor conditions.
    Umazume Y; Kasuga N
    Biophys J; 1984 Apr; 45(4):783-8. PubMed ID: 6609727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Birefringence changes in vertebrate striated muscle.
    Taylor DL
    J Supramol Struct; 1975; 3(2):181-91. PubMed ID: 172736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence properties and contraction characteristics of ANM (N-(1-anilinonaphthyl-4)maleimide)-labeled rabbit psoas muscle fibers.
    Chaen S; Shimada M; Sugi H
    J Biochem; 1985 Oct; 98(4):939-47. PubMed ID: 2934382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the SII portion of the cross-bridge in glycerinated rabbit psoas fibers compliant in the rigor state?
    Kimura M; Tawada K
    Biophys J; 1984 Mar; 45(3):603-10. PubMed ID: 6201201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.