These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 4443792)
1. The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system. Komor E; Tanner W J Gen Physiol; 1974 Nov; 64(5):568-81. PubMed ID: 4443792 [TBL] [Abstract][Full Text] [Related]
2. Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Evidence for sugar-dependent proton uptake without concomitant sugar uptake by the proton-sugar symport system. Grüneberg A; Komor E Biochim Biophys Acta; 1976 Sep; 448(1):133-42. PubMed ID: 9152 [TBL] [Abstract][Full Text] [Related]
3. Sugar specificity and sugar-proton interaction for the hexose-proton-symport system of Chlorella. Komor E; Schobert C; Cho BH Eur J Biochem; 1985 Feb; 146(3):649-56. PubMed ID: 2982603 [TBL] [Abstract][Full Text] [Related]
4. The determination of the membrane ptoential of Chlorella vulgaris. Evidence for electrogenic sugar transport. Komor E; Tanner W Eur J Biochem; 1976 Nov; 70(1):197-204. PubMed ID: 12943 [TBL] [Abstract][Full Text] [Related]
5. The effect of intracellular pH on the rate of hexose uptake in Chlorella. Komor E; Schwab WG; Tanner W Biochim Biophys Acta; 1979 Aug; 555(3):524-30. PubMed ID: 39601 [TBL] [Abstract][Full Text] [Related]
6. Active transport of charged substrates by a proton/sugar co-transport system. Amino-sugar uptake in the yeast Rhodotorula gracilis. Niemietz C; Hauer R; Höfer M Biochem J; 1981 Feb; 194(2):433-41. PubMed ID: 6272730 [TBL] [Abstract][Full Text] [Related]
7. A model for the kinetics of neutral and anionic dipeptide-proton cotransport by the apical membrane of rat kidney cortex. Temple CS; Bailey PD; Bronk JR; Boyd CA J Physiol; 1996 Aug; 494 ( Pt 3)(Pt 3):795-808. PubMed ID: 8865075 [TBL] [Abstract][Full Text] [Related]
8. The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake. Komor E; Tanner W Eur J Biochem; 1974 May; 44(1):219-23. PubMed ID: 4854863 [No Abstract] [Full Text] [Related]
9. Variable H+/substrate stoicheiometries in Rhodotorula gracilis are caused by a pH-dependent protonation of the carrier(s). Hauer R; Höfer M Biochem J; 1982 Nov; 208(2):459-64. PubMed ID: 6297468 [TBL] [Abstract][Full Text] [Related]
10. The mechanism of sugar uptake by sugarcane suspension cells. Komor E; Thom M; Maretzki A Planta; 1981 Oct; 153(2):181-92. PubMed ID: 24276769 [TBL] [Abstract][Full Text] [Related]
11. The conserved histidine 295 does not contribute to proton cotransport by the glutamate transporter EAAC1. Tao Z; Grewer C Biochemistry; 2005 Mar; 44(9):3466-76. PubMed ID: 15736956 [TBL] [Abstract][Full Text] [Related]
12. A possible mechanistic role of the membrane potential in proton-sugar cotransport of Chlorella. Schwab WG; Komor E FEBS Lett; 1978 Mar; 87(1):157-60. PubMed ID: 24552 [No Abstract] [Full Text] [Related]
13. Sugar transport in Coprinus cinereus. Moore D; Devadatham MS Biochim Biophys Acta; 1979 Feb; 550(3):515-26. PubMed ID: 33708 [TBL] [Abstract][Full Text] [Related]
14. Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Höfer M; Misra PC Biochem J; 1978 Apr; 172(1):15-22. PubMed ID: 26338 [TBL] [Abstract][Full Text] [Related]
16. Kinetic analysis of simultaneously occurring proton-sorbose symport and passive sorbose transport in Saccharomyces fragilis. van den Broek PJ; van Steveninck J Biochim Biophys Acta; 1980 Nov; 602(2):419-32. PubMed ID: 6252966 [TBL] [Abstract][Full Text] [Related]
17. Kinetic parameters for the vesicular acetylcholine transporter: two protons are exchanged for one acetylcholine. Nguyen ML; Cox GD; Parsons SM Biochemistry; 1998 Sep; 37(38):13400-10. PubMed ID: 9748347 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Gerós H; Cássio F; Leão C Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930 [TBL] [Abstract][Full Text] [Related]
19. Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. Fuster D; Moe OW; Hilgemann DW J Gen Physiol; 2008 Oct; 132(4):465-80. PubMed ID: 18824592 [TBL] [Abstract][Full Text] [Related]
20. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state. Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]