These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4444586)

  • 1. New applications of certain common organic dyes (acriflavine, eosin, and mercurochrome) in inorganic qualitative analysis. Detection of bromide, bromate, thallium(I), lead(II), cadmium(II), copper(II), and iron(III).
    Johar GS
    Mikrochim Acta; 1974; (4):729-42. PubMed ID: 4444586
    [No Abstract]   [Full Text] [Related]  

  • 2. Applications of atomic absorption spectrometry to trace metal analyses of toxicological materials.
    Berman E
    Prog Chem Toxicol; 1969; 4():155-78. PubMed ID: 5346179
    [No Abstract]   [Full Text] [Related]  

  • 3. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.
    Fang J; Zhao Q; Fan C; Shang C; Fu Y; Zhang X
    Chemosphere; 2017 Sep; 183():582-588. PubMed ID: 28570902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate.
    Li Z; Chen Z; Xiang Y; Ling L; Fang J; Shang C; Dionysiou DD
    Water Res; 2015 Oct; 83():132-40. PubMed ID: 26143270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace element concentrations in renal cell carcinoma.
    Karcioglu ZA; Sarper RM; Van Rinsvelt HA; Guffey JA; Fink RW
    Cancer; 1978 Sep; 42(3):1330-40. PubMed ID: 212175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accumulation of organic and inorganic mercury compounds by the eastern oyster (Crassostrea virginica).
    Kopfler FC
    Bull Environ Contam Toxicol; 1974 Mar; 11(3):275-80. PubMed ID: 4433812
    [No Abstract]   [Full Text] [Related]  

  • 7. Formation of bromate during ferrate(VI) oxidation of bromide in water.
    Huang X; Deng Y; Liu S; Song Y; Li N; Zhou J
    Chemosphere; 2016 Jul; 155():528-533. PubMed ID: 27153235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germanium dioxide as internal standard for simplified trace determination of bromate, bromide, iodate and iodide by on-line coupling ion chromatography-inductively coupled plasma mass spectrometry.
    Eickhorst T; Seubert A
    J Chromatogr A; 2004 Sep; 1050(1):103-9. PubMed ID: 15503931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct injection, simple and robust analysis of trace-level bromate and bromide in drinking water by IC with suppressed conductivity detection.
    Lawal W; Gandhi J; Zhang CC
    J Chromatogr Sci; 2010 Aug; 48(7):537-43. PubMed ID: 20819277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: catalytic disproportionation of hypobromous acid.
    Liu C; von Gunten U; Croué JP
    Environ Sci Technol; 2012 Oct; 46(20):11054-61. PubMed ID: 22963047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromide oxidation by ferrate(VI): The formation of active bromine and bromate.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2016 Jun; 96():188-97. PubMed ID: 27050745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system.
    Simões da Costa AM; Delgadillo I; Rudnitskaya A
    Talanta; 2014 Nov; 129():63-71. PubMed ID: 25127565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Specific ionic electrodes].
    Bureau J; Collombel C
    Eur J Toxicol; 1971; 4(1):19-35. PubMed ID: 5092663
    [No Abstract]   [Full Text] [Related]  

  • 14. [Determination of trace bromate in drinking water by ion chromatography with suppressed conductivity detection].
    Ying B; Li S; Yue Y; Xueli E
    Se Pu; 2006 May; 24(3):302-4. PubMed ID: 16929854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of cadmium, copper and lead in natural waters after anion-exchange separtion.
    Korkisch J; Sorio A
    Anal Chim Acta; 1975 Jun; 76(2):393-9. PubMed ID: 1147279
    [No Abstract]   [Full Text] [Related]  

  • 16. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.
    Liu C; von Gunten U; Croué JP
    Water Res; 2013 Sep; 47(14):5307-15. PubMed ID: 23866145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion.
    Parrino F; Camera-Roda G; Loddo V; Palmisano G; Augugliaro V
    Water Res; 2014 Mar; 50():189-99. PubMed ID: 24374130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid separation and determination by differential pulse polarography of traces of lead, cadmium, copper and zinc in pure ferric oxide preparations used as dyes in pharmaceuticals.
    Vandenbalck JL; Patriarche GJ; Christian GD
    J Pharm Belg; 1979; 34(6):349-52. PubMed ID: 521896
    [No Abstract]   [Full Text] [Related]  

  • 19. Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidneys of poultry, rabbit and sheep slaughtered in the northern part of Poland, 1987.
    Falandysz J
    Food Addit Contam; 1991; 8(1):71-83. PubMed ID: 2015933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-phase microextraction-gas chromatography-mass spectrometry for the determination of bromate, iodate, bromide and iodide in high-chloride matrix.
    Reddy-Noone K; Jain A; Verma KK
    J Chromatogr A; 2007 May; 1148(2):145-51. PubMed ID: 17391685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.