These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 444464)
21. Covalent modification of engineered cysteines in the nicotinic acetylcholine receptor agonist-binding domain inhibits receptor activation. McLaughlin JT; Hawrot E; Yellen G Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):765-9. PubMed ID: 7575408 [TBL] [Abstract][Full Text] [Related]
22. Interaction of nicotinic receptor affinity reagents with central nervous system alpha-bungarotoxin-binding entities. Lukas RJ; Bennett EL Mol Pharmacol; 1980 Mar; 17(2):149-55. PubMed ID: 7393201 [No Abstract] [Full Text] [Related]
23. Characterization of the binding of [3H]substance P to the nicotinic acetylcholine receptor of Torpedo electroplaque. Min CK; Owens J; Weiland GA Mol Pharmacol; 1994 Feb; 45(2):221-7. PubMed ID: 7509439 [TBL] [Abstract][Full Text] [Related]
24. Desensitization of membrane-bound Torpedo acetylcholine receptor by amine noncompetitive antagonists and aliphatic alcohols: studies of [3H]acetylcholine binding and 22Na+ ion fluxes. Boyd ND; Cohen JB Biochemistry; 1984 Aug; 23(18):4023-33. PubMed ID: 6091734 [TBL] [Abstract][Full Text] [Related]
25. Independent activation of the acetylcholine receptor from Torpedo californica at two sites. Delegeane AM; McNamee MG Biochemistry; 1980 Mar; 19(5):890-5. PubMed ID: 7356966 [TBL] [Abstract][Full Text] [Related]
26. Kinetics of binding of [3H]acetylcholine to Torpedo postsynaptic membranes: association and dissociation rate constants by rapid mixing and ultrafiltration. Boyd ND; Cohen JB Biochemistry; 1980 Nov; 19(23):5353-8. PubMed ID: 7448174 [TBL] [Abstract][Full Text] [Related]
27. Effects of disulfide bond reduction on the excitatory and inhibitory postsynaptic responses of Aplysia ganglion cells. Sato T; Sato M; Sawada M Jpn J Physiol; 1976; 26(5):471-85. PubMed ID: 189109 [TBL] [Abstract][Full Text] [Related]
28. Interaction of di-iodinated 125I-labelled alpha-bungarotoxin and reversible cholinergic ligands with intact synaptic acetylcholine receptors on isolated skeletal-muscle fibres from the rat. Darveniza P; Morgan-Hughes JA; Thompson EJ Biochem J; 1979 Sep; 181(3):545-57. PubMed ID: 518540 [TBL] [Abstract][Full Text] [Related]
29. Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: agonist dose-response relations measured at second and millisecond times. Neubig RR; Cohen JB Biochemistry; 1980 Jun; 19(12):2770-9. PubMed ID: 7397104 [TBL] [Abstract][Full Text] [Related]
30. Chemical modification of the nicotinic cholinergic receptor of PC-12 nerve cell. Leprince P Biochemistry; 1983 Nov; 22(24):5551-6. PubMed ID: 6652075 [TBL] [Abstract][Full Text] [Related]
31. Studies of nicotinic acetylcholine receptor protein from rat brain. II. Partial purification. Moore WM; Brady RN Biochim Biophys Acta; 1977 Jul; 498(1):331-40. PubMed ID: 884157 [TBL] [Abstract][Full Text] [Related]
32. Dynamic properties of isolated acetylcholine receptor proteins: release of calcium ions caused by acetylcholine binding. Chang HW; Neumann E Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3364-8. PubMed ID: 1068449 [TBL] [Abstract][Full Text] [Related]
33. A high-affinity site for acetylcholine occurs close to the alpha-gamma subunit interface of Torpedo nicotinic acetylcholine receptor. Dunn SM; Conti-Tronconi BM; Raftery MA Biochemistry; 1993 Aug; 32(33):8616-21. PubMed ID: 8357804 [TBL] [Abstract][Full Text] [Related]
34. Ligand-induced interconversion of affinity states in membrane-bound acetylcholine receptor from Torpedo californica. Effects of sulfhydryl and disulfide reagents. Moore HP; Raftery MA Biochemistry; 1979 May; 18(10):1907-11. PubMed ID: 435455 [No Abstract] [Full Text] [Related]
35. Consensus residues at the acetylcholine binding site of cholinergic proteins. Peterson GL J Neurosci Res; 1989 Apr; 22(4):488-503. PubMed ID: 2760945 [TBL] [Abstract][Full Text] [Related]
36. Protein phosphorylation of nicotinic acetylcholine receptors. Huganir RL; Miles K Crit Rev Biochem Mol Biol; 1989; 24(3):183-215. PubMed ID: 2541970 [TBL] [Abstract][Full Text] [Related]
37. Interactions of the thymic polypeptide hormone thymopoietin with neuronal nicotinic alpha-bungarotoxin binding sites and with muscle-type, but not ganglia-type, nicotinic acetylcholine receptor ligand-gated ion channels. Lukas RJ; Audhya T; Goldstein G; Lucero L Mol Pharmacol; 1990 Dec; 38(6):887-94. PubMed ID: 1701215 [TBL] [Abstract][Full Text] [Related]
38. Evidence for thymopoietin and thymopoietin/alpha-bungarotoxin/nicotinic receptors within the brain. Quik M; Babu U; Audhya T; Goldstein G Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2603-7. PubMed ID: 1848710 [TBL] [Abstract][Full Text] [Related]
39. Effects of thio-group modifications of Torpedo californica acetylcholine receptor on ion flux activation and inactivation kinetics. Walker JW; Richardson CA; McNamee MG Biochemistry; 1984 May; 23(11):2329-38. PubMed ID: 6089867 [TBL] [Abstract][Full Text] [Related]
40. Characterization of curaremimetic neurotoxin binding sites on cellular membrane fragments derived from the rat pheochromocytoma PC12. Lukas RJ J Neurochem; 1986 Dec; 47(6):1768-73. PubMed ID: 3772376 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]