These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 444498)
41. Vanadium compounds and ferrocyanide as ionic redox agents in photosynthesis. Rosen D; Barr R; Crane FL Biochim Biophys Acta; 1975 Oct; 408(1):35-46. PubMed ID: 240442 [TBL] [Abstract][Full Text] [Related]
42. Photooxidation of cytochrome b 559 and the electron donors in chloroplast photosystem II. Vermeglio A; Mathis P Biochim Biophys Acta; 1973 Apr; 292(3):763-71. PubMed ID: 4705454 [No Abstract] [Full Text] [Related]
43. Interaction of oxidized and reduced N-methylphenazonium methosulfate (PMS) with photosystem II. Schmidt B Biochim Biophys Acta; 1976 Dec; 449(3):516-24. PubMed ID: 999850 [TBL] [Abstract][Full Text] [Related]
44. [Photosynthetic electron transfer at the level of cytochrome f and plastocyanin]. Akulova EA; Roshchina VV Biokhimiia; 1977 Dec; 42(12):2140-8. PubMed ID: 23182 [TBL] [Abstract][Full Text] [Related]
45. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts. Heber U; Kirk MR Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902 [TBL] [Abstract][Full Text] [Related]
46. Localization of electron transport inhibition in plastoquinone reactions. Haehnel W; Trebst A J Bioenerg Biomembr; 1982 Jun; 14(3):181-90. PubMed ID: 7096321 [TBL] [Abstract][Full Text] [Related]
47. Dual roles of photosynthetic electron transport in photosystem I biogenesis: light induction of mRNAs and chromatic regulation at post-mRNA level. Matsuo M; Obokata J Plant Cell Physiol; 2002 Oct; 43(10):1189-97. PubMed ID: 12407199 [TBL] [Abstract][Full Text] [Related]
48. The site of inhibition of the chloroplast electron-transport system by 2,3-dithiopropan-1-ol (BAL). Shahak Y; Hind G; Padan E Eur J Biochem; 1987 Apr; 164(2):453-60. PubMed ID: 3569275 [TBL] [Abstract][Full Text] [Related]
49. Inhibition of energy-transducing functions of chloroplast membranes by lipophilic iron chelators. Bering CL; Dilley RA; Crane FL Biochim Biophys Acta; 1976 May; 430(2):327-35. PubMed ID: 132188 [TBL] [Abstract][Full Text] [Related]
50. Distinct redox behaviors of chloroplast thiol enzymes and their relationships with photosynthetic electron transport in Arabidopsis thaliana. Yoshida K; Matsuoka Y; Hara S; Konno H; Hisabori T Plant Cell Physiol; 2014 Aug; 55(8):1415-25. PubMed ID: 24850837 [TBL] [Abstract][Full Text] [Related]
51. [Electron spin resonance of electron transport in photosynthetic systems. IX. Temperature dependence of the kinetics of P700 redox transients in bean chloroplasts induced by flashes of different duration]. Tikhonov AN; Khomutov GB; Ruuge EK Mol Biol (Mosk); 1980; 14(1):157-72. PubMed ID: 6262630 [TBL] [Abstract][Full Text] [Related]
52. Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of photosystem II by reduced nicotinamide adenine dinucleotide phosphate in the dark. Mills JD; Crowther D; Slovacek RE; Hind G; McCarty RE Biochim Biophys Acta; 1979 Jul; 547(1):127-37. PubMed ID: 37900 [TBL] [Abstract][Full Text] [Related]
53. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Egneus H; Heber U; Matthiesen U; Kirk M Biochim Biophys Acta; 1975 Dec; 408(3):252-68. PubMed ID: 1191661 [TBL] [Abstract][Full Text] [Related]
54. Correlation of redox levels of component electron carriers with total electron flux in an electron-transport system. P-700 and the photoreduction of NADP+ in chloroplast fragments. Hiyama T; McSwain BD; Arnon DI Biochim Biophys Acta; 1977 Apr; 460(1):65-75. PubMed ID: 15591 [TBL] [Abstract][Full Text] [Related]
55. CO2 reduction by intact chloroplasts under a diminished proton gradient. Tillberg JE; Giersch C; Heber U Biochim Biophys Acta; 1977 Jul; 461(1):31-47. PubMed ID: 18173 [TBL] [Abstract][Full Text] [Related]
56. [Localization of the Meler's reaction with ethanol catalase trap in the chain of photosynthetic electron transport]. Bekina RM; Lebedeva AF; Rubin BA Biokhimiia; 1976 May; 41(5):815-21. PubMed ID: 1030637 [TBL] [Abstract][Full Text] [Related]
57. Localization of the reaction site of cytochrome 552 in chloroplasts from Euglena gracilis. Cytochrome content and photooxidation in different chloroplast preparations. Wildner GF; Hauska G Arch Biochem Biophys; 1974 Sep; 164(1):127-35. PubMed ID: 4154724 [No Abstract] [Full Text] [Related]
58. Quantitation of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone binding sites in chloroplast membranes: evidence for a functional dimer of the cytochrome b6f complex. Graan T; Ort DR Arch Biochem Biophys; 1986 Aug; 248(2):445-51. PubMed ID: 3740838 [TBL] [Abstract][Full Text] [Related]
59. Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. IV. The effects of electron-transport conditions on violaxanthin availability. Siefermann D; Yamamoto HY Biochim Biophys Acta; 1975 Apr; 387(1):149-58. PubMed ID: 1125284 [TBL] [Abstract][Full Text] [Related]
60. Study of heme Fe(III) ligated by OH- in cytochrome b-559 and its low temperature photochemistry in intact chloroplasts. Fiege R; Schreiber U; Renger G; Lubitz W; Shuvalov VA FEBS Lett; 1995 Dec; 377(3):325-9. PubMed ID: 8549748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]