These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 444501)

  • 1. Influence of the energetic state of mitochondria on the inhibition of oxidative phosphorylation by N-ethylmaleimide.
    Le Quoc K; Le Quoc D; Gaudemer Y
    Biochim Biophys Acta; 1979 May; 546(2):356-64. PubMed ID: 444501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the energetic state of rat liver mitochondria on the sensitivity of the phosphate carrier towards SH reagents.
    Le Quoc D; Le Quoc K; Gaudemer Y
    Biochim Biophys Acta; 1977 Oct; 462(1):131-40. PubMed ID: 911819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathway of inorganic-phosphate efflux from isolated liver mitochondria during adenosine triphosphate hydrolysis.
    Tyler DD
    Biochem J; 1980 Dec; 192(3):821-8. PubMed ID: 6453587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of phthalate esters on energy coupling and succinate oxidation in rat liver mitochondria.
    Melnick RL; Schiller CM
    Toxicology; 1985 Jan; 34(1):13-27. PubMed ID: 3969678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by tetraphenylarsonium.
    Higuti T; Arakaki N; Niimi S; Nakasima S; Saito R; Tani I; Ota F
    J Biol Chem; 1980 Aug; 255(16):7631-6. PubMed ID: 7400137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition.
    Kowaltowski AJ; Vercesi AE; Castilho RF
    Biochim Biophys Acta; 1997 Feb; 1318(3):395-402. PubMed ID: 9048976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of interaction of ticlopidine and its analogues with the energy-conserving mechanism in mitochondria.
    Abou-Khalil S; Abou-Khalil WH; Yunis AA
    Biochem Pharmacol; 1986 Jun; 35(11):1855-9. PubMed ID: 2941020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of palmitoyl-CoA binding with adenine nucleotide translocase on energization of mitochondria].
    Filippova SN; Bavilin VA; Panov AV
    Biull Eksp Biol Med; 1979 Sep; 88(9):297-9. PubMed ID: 42454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal violet as an uncoupler of oxidative phosphorylation in rat liver mitochondria.
    Moreno SN; Gadelha FR; Docampo R
    J Biol Chem; 1988 Sep; 263(25):12493-9. PubMed ID: 2970460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D; Lê-Quôc K
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a membrane protein involved in mitochondrial phosphate transport.
    Hadvary P; Kadenbach B
    Eur J Biochem; 1976 Aug; 67(2):573-81. PubMed ID: 964259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes.
    Azzone GF; Massari S; Pozzan T
    Biochim Biophys Acta; 1976 Jan; 423(1):15-26. PubMed ID: 1247603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cyanine dye tri-S-C7(5). Phosphate-dependent cationic uncoupler of oxidative phosphorylation in mitochondria.
    Terada H; Nagamune H
    Biochim Biophys Acta; 1983 Apr; 723(1):7-15. PubMed ID: 6830769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the opening of an insensitive cyclosporin A non-specific pore by phenylarsine plus mersalyl.
    García N; Martínez-Abundis E; Pavón N; Chávez E
    Cell Biochem Biophys; 2007; 49(2):84-90. PubMed ID: 17906363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate-induced efflux of adenine nucleotides from rat-heart mitochondria: evaluation of the roles of the phosphate/hydroxyl exchanger and the dicarboxylate carrier.
    Wilson DE; Asimakis GK
    Biochim Biophys Acta; 1987 Oct; 893(3):470-9. PubMed ID: 3651445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mitochondrial oxidative phosphorylation by 2-methyl-4-dimethylaminoazobenzene.
    Kumar PS; Kurup CK
    Biochim Biophys Acta; 1984 Jul; 766(1):263-6. PubMed ID: 6430342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ATP on various steps controlling the rate of oxidative phosphorylation in newborn rat liver mitochondria.
    Baggetto L; Gautheron DC; Godinot C
    Arch Biochem Biophys; 1984 Aug; 232(2):670-8. PubMed ID: 6087735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical imbalance of adenine nucleotide transport across the mitochondrial membrane.
    LaNoue K; Mizani SM; Klingenberg M
    J Biol Chem; 1978 Jan; 253(1):191-8. PubMed ID: 22542
    [No Abstract]   [Full Text] [Related]  

  • 20. Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria.
    Tyler DD
    Biochem J; 1969 Mar; 111(5):665-78. PubMed ID: 5783467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.