BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 444501)

  • 1. Influence of the energetic state of mitochondria on the inhibition of oxidative phosphorylation by N-ethylmaleimide.
    Le Quoc K; Le Quoc D; Gaudemer Y
    Biochim Biophys Acta; 1979 May; 546(2):356-64. PubMed ID: 444501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the energetic state of rat liver mitochondria on the sensitivity of the phosphate carrier towards SH reagents.
    Le Quoc D; Le Quoc K; Gaudemer Y
    Biochim Biophys Acta; 1977 Oct; 462(1):131-40. PubMed ID: 911819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathway of inorganic-phosphate efflux from isolated liver mitochondria during adenosine triphosphate hydrolysis.
    Tyler DD
    Biochem J; 1980 Dec; 192(3):821-8. PubMed ID: 6453587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of phthalate esters on energy coupling and succinate oxidation in rat liver mitochondria.
    Melnick RL; Schiller CM
    Toxicology; 1985 Jan; 34(1):13-27. PubMed ID: 3969678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by tetraphenylarsonium.
    Higuti T; Arakaki N; Niimi S; Nakasima S; Saito R; Tani I; Ota F
    J Biol Chem; 1980 Aug; 255(16):7631-6. PubMed ID: 7400137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition.
    Kowaltowski AJ; Vercesi AE; Castilho RF
    Biochim Biophys Acta; 1997 Feb; 1318(3):395-402. PubMed ID: 9048976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of interaction of ticlopidine and its analogues with the energy-conserving mechanism in mitochondria.
    Abou-Khalil S; Abou-Khalil WH; Yunis AA
    Biochem Pharmacol; 1986 Jun; 35(11):1855-9. PubMed ID: 2941020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of palmitoyl-CoA binding with adenine nucleotide translocase on energization of mitochondria].
    Filippova SN; Bavilin VA; Panov AV
    Biull Eksp Biol Med; 1979 Sep; 88(9):297-9. PubMed ID: 42454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal violet as an uncoupler of oxidative phosphorylation in rat liver mitochondria.
    Moreno SN; Gadelha FR; Docampo R
    J Biol Chem; 1988 Sep; 263(25):12493-9. PubMed ID: 2970460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D; Lê-Quôc K
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a membrane protein involved in mitochondrial phosphate transport.
    Hadvary P; Kadenbach B
    Eur J Biochem; 1976 Aug; 67(2):573-81. PubMed ID: 964259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes.
    Azzone GF; Massari S; Pozzan T
    Biochim Biophys Acta; 1976 Jan; 423(1):15-26. PubMed ID: 1247603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cyanine dye tri-S-C7(5). Phosphate-dependent cationic uncoupler of oxidative phosphorylation in mitochondria.
    Terada H; Nagamune H
    Biochim Biophys Acta; 1983 Apr; 723(1):7-15. PubMed ID: 6830769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the opening of an insensitive cyclosporin A non-specific pore by phenylarsine plus mersalyl.
    García N; Martínez-Abundis E; Pavón N; Chávez E
    Cell Biochem Biophys; 2007; 49(2):84-90. PubMed ID: 17906363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate-induced efflux of adenine nucleotides from rat-heart mitochondria: evaluation of the roles of the phosphate/hydroxyl exchanger and the dicarboxylate carrier.
    Wilson DE; Asimakis GK
    Biochim Biophys Acta; 1987 Oct; 893(3):470-9. PubMed ID: 3651445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mitochondrial oxidative phosphorylation by 2-methyl-4-dimethylaminoazobenzene.
    Kumar PS; Kurup CK
    Biochim Biophys Acta; 1984 Jul; 766(1):263-6. PubMed ID: 6430342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ATP on various steps controlling the rate of oxidative phosphorylation in newborn rat liver mitochondria.
    Baggetto L; Gautheron DC; Godinot C
    Arch Biochem Biophys; 1984 Aug; 232(2):670-8. PubMed ID: 6087735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical imbalance of adenine nucleotide transport across the mitochondrial membrane.
    LaNoue K; Mizani SM; Klingenberg M
    J Biol Chem; 1978 Jan; 253(1):191-8. PubMed ID: 22542
    [No Abstract]   [Full Text] [Related]  

  • 20. Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria.
    Tyler DD
    Biochem J; 1969 Mar; 111(5):665-78. PubMed ID: 5783467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.