These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4447501)

  • 1. An investigation into the precision of micro-haematocrit determinations of sheep blood.
    Dooley PC; Morris RJ; Williams VJ; Bofinger VJ
    Aust J Exp Biol Med Sci; 1974 Aug; 52(4):663-77. PubMed ID: 4447501
    [No Abstract]   [Full Text] [Related]  

  • 2. High erythrocyte water content causes discrepancy between values of automated and micro-centrifuged haematocrit.
    Heseltine D; Thomas TH; James OF; Kesteven P; Potter JF
    Acta Haematol; 1988; 80(2):89-90. PubMed ID: 3138876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ISOTOPE DILUTION AND THERMODYNAMICS IN THE STUDY OF INTERCOMPARTMENTAL BODY FLUID EXCHANGE.
    BRADHAM GB; BENNETT LR; DEHAVEN JC; DELAND EC; WOLF MB; MALONEY JV
    Surg Gynecol Obstet; 1964 Nov; 119():1062-8. PubMed ID: 14239288
    [No Abstract]   [Full Text] [Related]  

  • 4. In vitro inhibition of glycolysis in blood and its effect on the haematocrit.
    Anderson DM
    J Comp Pathol; 1969 Oct; 79(4):525-35. PubMed ID: 5351417
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of acute posthaemorrhagic anaemia on the level of 2,3-diphosphoglycerate (2,3-DPG) in the erythrocytes of sheep.
    Studziński T; Czarnecki A; Głuszak A
    Acta Physiol Pol; 1980; 31(4):365-73. PubMed ID: 7446149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in plasma volume and haematocrit in intact and splenectomized sheep during feeding.
    Dooley PC; Williams VJ
    Aust J Biol Sci; 1976 Dec; 29(5-6):533-44. PubMed ID: 1023866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of haematocrit and anticoagulants on the rate of packing of erythrocytes by a centrifuge.
    Rampling M; Sirs JA
    Phys Med Biol; 1970 Jan; 15(1):15-21. PubMed ID: 4984923
    [No Abstract]   [Full Text] [Related]  

  • 8. Changes in the jugular haematocrit of sheep during feeding.
    Dooley PC; Williams VJ
    Aust J Biol Sci; 1975 Feb; 28(1):43-53. PubMed ID: 1164256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. THE MECHANISM OF THE EFFECT OF ISO- AND HYPEROSMOLAR DEXTROSE-SALINE SOLUTIONS ON IN VIVO SURVIVAL OF HUMAN ERYTHROCYTES.
    DECESARE WR; BOVE JR; EBAUGH FG
    Transfusion; 1964; 4():237-50. PubMed ID: 14177374
    [No Abstract]   [Full Text] [Related]  

  • 10. [Colloid substitutes and hematocrit measurement by micromethods].
    Vedrinne JM; Gentilhomme O; Bussery D; Hoen JP; Lasne Y; Motin J
    Ann Fr Anesth Reanim; 1991; 10(1):28-30. PubMed ID: 2008971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The function of human hemoglobin; salt effects.
    Dawson RB; Ellis TJ; Swiggins CE; Spurlok DW
    Vox Sang; 1971 May; 20(5):388-96. PubMed ID: 5099005
    [No Abstract]   [Full Text] [Related]  

  • 12. STUDIES OF IN VITRO INCORPORATION OF P32 BY HUMAN ERYTHROCYTES.
    CUSTOD JT; BERNSOHN J; REMENCHIK AP
    J Nucl Med; 1964 Sep; 5():681-90. PubMed ID: 14235599
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of the host on transfused preserved red blood cells.
    Valeri CR; Szymanski IO; Pivacek LE
    J Med; 1971; 2(4):228-47. PubMed ID: 5291107
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of delays between restraint and sampling on some blood parameters in sheep.
    Fenwick DC; Blackshaw JK; Green DJ
    Vet Res Commun; 1986 Jul; 10(4):309-15. PubMed ID: 3739216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The purification of red cells for transfusion by freeze-preservation and washing. V. Red cell recovery and residual leukocytes after freeze-preservation with high concentrations of glycerol and washing in various systems.
    Crowley JP; Wade PH; Wish C; Valeri CR
    Transfusion; 1977; 17(1):1-7. PubMed ID: 841667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium and potassium transport in camel red cells.
    Dakkuri A; Naccache P; Sha'afi RI
    Comp Biochem Physiol A Comp Physiol; 1972 Dec; 43(4):1019-23. PubMed ID: 4405335
    [No Abstract]   [Full Text] [Related]  

  • 17. Sodium and potassium content and membrane transport properties in red blood cells from newborn puppies.
    Miles PR; Lee P
    J Cell Physiol; 1972 Jun; 79(3):367-76. PubMed ID: 5039931
    [No Abstract]   [Full Text] [Related]  

  • 18. Observations on the chromium labelling of ACD-stored and previously frozen red cells.
    Valeri CR
    Transfusion; 1968; 8(4):210-9. PubMed ID: 4970374
    [No Abstract]   [Full Text] [Related]  

  • 19. Sodium fluxes in rat red blood cells in potassium-free solutions. Evidences for facilitated diffusion.
    Beaugé LA; Ortiz O
    J Membr Biol; 1973; 13(2):165-84. PubMed ID: 4778805
    [No Abstract]   [Full Text] [Related]  

  • 20. Erythrocyte sodium transport and membrane adenosine triphosphatase in patients with thermal injury.
    Helmkamp GM; Blackwell JP; Wilmore DW
    Clin Chim Acta; 1973 Aug; 47(1):5-12. PubMed ID: 4270608
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.