These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4448494)

  • 21. [Effects of culture on oxidation of sorbitol by Acetobacter suboxydans].
    RAZUMOVSKAIA ZG; ZHDAN-PUSHKINA SM
    Mikrobiologiia; 1956; 25(1):16-24. PubMed ID: 13321525
    [No Abstract]   [Full Text] [Related]  

  • 22. [Carbon dioxide requirement in bacteria oxidizing sorbitol into sorbose].
    MITIUSHOVA NM
    Mikrobiologiia; 1952; 21(3):265-72. PubMed ID: 14940713
    [No Abstract]   [Full Text] [Related]  

  • 23. [Effect of partial pressure of oxygen on the oxidation of sorbite into sorbose by bacteria Acetobacter melanogenum].
    MIKHLIN E; ROZENBERG I
    Biokhimiia; 1950; 15(5):444-7. PubMed ID: 14820957
    [No Abstract]   [Full Text] [Related]  

  • 24. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291.
    Shinjoh M; Tazoe M; Hoshino T
    J Bacteriol; 2002 Feb; 184(3):861-3. PubMed ID: 11790761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025.
    Sugisawa T; Miyazaki T; Hoshino T
    Biosci Biotechnol Biochem; 2005 Mar; 69(3):659-62. PubMed ID: 15785002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Dynamics of multiplication and oxidation of sorbitol by Acetobacter suboxydans in cultures containing vitamin B complex].
    ZHDAN-PUSHKINA SM
    Mikrobiologiia; 1955; 24(5):545-9. PubMed ID: 13296885
    [No Abstract]   [Full Text] [Related]  

  • 27. 5-Deoxy-5-fluoro-L-sorbose originating from 2-deoxy-2-fluoro-D-glucitol by fermentation with Acetomonas oxydans.
    Kulhánek M; Tadra M; Pacák J; Trejbalová H; Cerný M
    Folia Microbiol (Praha); 1977; 22(4):295-7. PubMed ID: 892670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical dehydrogenations of saccharides. V. Isolation of 5-ketosorbose formed during sorbose fermentation.
    Kulhánek M; Sevcíková Z
    Folia Microbiol (Praha); 1965 Nov; 10(6):362-4. PubMed ID: 5861553
    [No Abstract]   [Full Text] [Related]  

  • 29. Sorbitol dehydrogenases in Acetobacter suboxydans.
    CUMMINS JT; CHELDELIN VH; KING TE
    J Biol Chem; 1957 May; 226(1):301-6. PubMed ID: 13428763
    [No Abstract]   [Full Text] [Related]  

  • 30. [On the significance of the concentration of substances in contrast media in the oxidation of sorbitol by acetic bacteria].
    RAZUMOVSKAIA ZG
    Tr Latv Padomju Soc Repub Zinat Akad Mikrobiol Inst; 1959; 6():46-51. PubMed ID: 14436690
    [No Abstract]   [Full Text] [Related]  

  • 31. The biological oxidation of sorbitol.
    CHELDELIN VH; CUMMINS JT; KING TE
    J Biol Chem; 1957 Jan; 224(1):323-9. PubMed ID: 13398408
    [No Abstract]   [Full Text] [Related]  

  • 32. Continuous 2-keto-L-gulonic acid fermentation from L-sorbose by Ketogulonigenium vulgare DSM 4025.
    Takagi Y; Sugisawa T; Hoshino T
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1049-56. PubMed ID: 19137290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [SORBITE OXIDATION DURING INTENSIVE AND DELAYED ACETOBACTER SUBOXYDANS REPRODUCTION].
    ZHDAN-PUSHKINA SM; KRENEVA RA
    Mikrobiologiia; 1963; 32():711-6. PubMed ID: 14074539
    [No Abstract]   [Full Text] [Related]  

  • 34. Fermentation of glucose by Acetobacter melanogenus.
    Stroshane RM; Perlman D
    Biotechnol Bioeng; 1977 Apr; 19(4):459-65. PubMed ID: 15673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Growth of Acetobacter suboxydans on a medium with sorbitol at various values of redox potential].
    Sukharevich VI; Razumovskaia ZG
    Mikrobiologiia; 1968; 37(5):832-6. PubMed ID: 5735973
    [No Abstract]   [Full Text] [Related]  

  • 36. [Oxidation of sorbitol with pliable strains of Acetobacter].
    IMSHENETSKII AA; KUZIURINA LA
    Mikrobiologiia; 1954; 23(2):159-65. PubMed ID: 13203065
    [No Abstract]   [Full Text] [Related]  

  • 37. NAD+-linked D-mannitol dehydrogenase in Acetobacter suboxydans.
    Shaw DR; Bygrave FL
    Biochim Biophys Acta; 1966 Mar; 113(3):608-10. PubMed ID: 4288131
    [No Abstract]   [Full Text] [Related]  

  • 38. Prediction of the course of continuous fermentation on the basis of analysis of the batch process.
    Fencl Z; Novák M
    Folia Microbiol (Praha); 1969; 14(4):314-21. PubMed ID: 5820744
    [No Abstract]   [Full Text] [Related]  

  • 39. D-hexosaminate production by oxidative fermentation.
    Moonmangmee D; Adachi O; Toyama H; Matsushita K
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):253-8. PubMed ID: 15290129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Production of acetic acid with lyophilized and associated strains of Acetobacter].
    de Matos CZ; Farah TC
    Rev Latinoam Microbiol; 1971; 13(1):21-3. PubMed ID: 5281207
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.