These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 4448494)

  • 41. [Yeast filtrate as a culture medium for bacteria oxidizing sorbitol into sorbose].
    ZHDAN-PUSHKINA SM
    Mikrobiologiia; 1959; 28(1):93-8. PubMed ID: 13643766
    [No Abstract]   [Full Text] [Related]  

  • 42. [Method of adaptation of Acetobacter melanogenum and suboxydans to high concentrations of sorbitol].
    GOLYSHEVA MG; LIBER LI
    Trudy Mosc Russ Vsesoiuznyi Nauchno Issled Vitam Inst; 1953; 4():79-83. PubMed ID: 13274497
    [No Abstract]   [Full Text] [Related]  

  • 43. [Effect of histidine on oxidation of sorbite by Acetobacter melanogenum].
    MIKHLIN ED; GOLYSHEVA MG
    Dokl Akad Nauk SSSR; 1952 Jan; 82(3):439-41. PubMed ID: 14906226
    [No Abstract]   [Full Text] [Related]  

  • 44. Microbial production of D-mannitol and D-fructose from glycerol.
    Onishi H; Suzuki T
    Biotechnol Bioeng; 1970 Nov; 12(6):913-20. PubMed ID: 5535893
    [No Abstract]   [Full Text] [Related]  

  • 45. Candida albicans SOU1 encodes a sorbose reductase required for L-sorbose utilization.
    Greenberg JR; Price NP; Oliver RP; Sherman F; Rustchenko E
    Yeast; 2005 Sep; 22(12):957-69. PubMed ID: 16134116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Variations of 2-ketogluconate and 5-ketogluconate oxidoreductases during growth in Acetobacter suboxydans.
    Galante E; Lanzani GA; Sequi P
    Enzymologia; 1966 Apr; 30(4):257-64. PubMed ID: 6005320
    [No Abstract]   [Full Text] [Related]  

  • 47. Proceedings: L-Sorbose metabolism in Agrobacterium: a biochemical explanation for an intrageneric phenotypic difference.
    van Keer C; Kersters K; De Ley J
    Arch Int Physiol Biochim; 1976 Feb; 84(1):200-1. PubMed ID: 60964
    [No Abstract]   [Full Text] [Related]  

  • 48. [Studies on the intensification of the transformation of glycerin to dihydroxyacetone by Acetobacter suboxydans].
    Sattler K
    Z Allg Mikrobiol; 1965; 5(2):136-46. PubMed ID: 5339218
    [No Abstract]   [Full Text] [Related]  

  • 49. Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan.
    Nanda K; Taniguchi M; Ujike S; Ishihara N; Mori H; Ono H; Murooka Y
    Appl Environ Microbiol; 2001 Feb; 67(2):986-90. PubMed ID: 11157275
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Dihydroxyacetone preparation via glycerin oxidation by a suspension of resting Acetobacter suboxydans cells].
    Pomortseva NV; Krasil'nikova TN; Paleeva MA; Nikolaev PI
    Prikl Biokhim Mikrobiol; 1974; 10(1):59-63. PubMed ID: 4463353
    [No Abstract]   [Full Text] [Related]  

  • 51. Fermentation of various soluble carbohydrates in rumen micro-organisms.
    Czerkawaki JW; Breckenridge G
    Proc Nutr Soc; 1969 Sep; 28(2):52A-53A. PubMed ID: 5389489
    [No Abstract]   [Full Text] [Related]  

  • 52. Preparation of D-sorbose from L-glucitol by bioconversion with Pseudomonas sp. Ac.
    Huwig A; Emmel S; Giffhorn F
    Carbohydr Res; 1996 Feb; 281(1):183-6. PubMed ID: 8839185
    [No Abstract]   [Full Text] [Related]  

  • 53. [Enzymatic activity of Acetobacter suboxydans. Influence of pH on the induction of 5-ketogenic activity].
    Galante E; Scalaffa P
    Boll Soc Ital Biol Sper; 1964 Oct; 40(20):1265-7. PubMed ID: 5877161
    [No Abstract]   [Full Text] [Related]  

  • 54. Enzymatic studies on the oxidation of sugar and sugar alcohol. 8. Particle-bound L-sorbose dehydrogenase from Gluconobacter suboxydans.
    Sato K; Yamada Y; Aida K; Uemura T
    J Biochem; 1969 Oct; 66(4):521-7. PubMed ID: 5354025
    [No Abstract]   [Full Text] [Related]  

  • 55. Characterization of acetic acid bacteria in "traditional balsamic vinegar".
    Gullo M; Caggia C; De Vero L; Giudici P
    Int J Food Microbiol; 2006 Feb; 106(2):209-12. PubMed ID: 16214251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidation of a branched-chain alditol by acetobacter suboxydans: a stereospecific synthesis of L-dendroketose.
    Szarek WA; Schnarr GW; Jarrell HC; Jones JK
    Carbohydr Res; 1977 Jan; 53(1):101-8. PubMed ID: 844055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Use of NMR spectroscopy in studies of sorbitol and glucose transformation by Gluconobacter oxydans].
    Kitova aE; Reshetilov AN; Kutyshenko VP; Kutyshenko AV
    Biofizika; 2006; 51(2):306-9. PubMed ID: 16637338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model system for increasing the intensity of whole-cell biocatalysis: investigation of the rate of oxidation of D-sorbitol to L-sorbose by thin bi-layer latex coatings of non-growing Gluconobacter oxydans.
    Fidaleo M; Charaniya S; Solheid C; Diel U; Laudon M; Ge H; Scriven LE; Flickinger MC
    Biotechnol Bioeng; 2006 Oct; 95(3):446-58. PubMed ID: 16804947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanism and localization of hexonate metabolism in Acetobacter suboxydans and Acetobacter melanogenum.
    DE LEY J; STOUTHAMER AJ
    Biochim Biophys Acta; 1959 Jul; 34():171-83. PubMed ID: 13814858
    [No Abstract]   [Full Text] [Related]  

  • 60. Polyol dehydrogenases. 2. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis.
    ARCUS AC; EDSON NL
    Biochem J; 1956 Nov; 64(3):385-94. PubMed ID: 13373782
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.