These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4448831)

  • 1. The effect of prolactin on the number of membrane-associated particles in kidney cells of the euryhaline teleost Gasterosteus aculeatus during transfer from seawater to freshwater: a freeze-etch study.
    Wendelaar SE; Veenhuis M
    J Cell Sci; 1974 Dec; 16(3):687-701. PubMed ID: 4448831
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of prolactin on kidney structure of the euryhaline teleost Gasterosteus aculeatus during adaptation to fresh water.
    Bonga SE
    Cell Tissue Res; 1976 Feb; 166(3):319-38. PubMed ID: 946416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The membranes of the basal labyrinth in kidney cells of the stickleback, Gasterosteus aculeatus, studied in ultrathin sections and freeze-etch replicas.
    Bonga SE; Veenhuis M
    J Cell Sci; 1974 May; 14(3):587-609. PubMed ID: 4208586
    [No Abstract]   [Full Text] [Related]  

  • 4. The relationship between the ionic composition of the environment and the secretory activity of the endocrine cell types of Stannius corpuscles in the teleost Gasterosteus aculeatus.
    Wendelaar Bonga SE; Greven JA; Veenhuis M
    Cell Tissue Res; 1976 Dec; 175(3):297-312. PubMed ID: 1036718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cells and intercellular contacts in glomeruli and tubules of the frog kidney. A freeze-fracture and thin-section study.
    Taugner R; Schiller A; Ntokalou-Knittel S
    Cell Tissue Res; 1982; 226(3):589-608. PubMed ID: 6982755
    [No Abstract]   [Full Text] [Related]  

  • 6. Morphometrical analysis with the light and electron microscope of the kidney of the anadromous three-spined stickleback Gasterosteus aculeatus, form trachurus, from fresh water and from sea water.
    Bonga SE
    Z Zellforsch Mikrosk Anat; 1973 Mar; 137(4):563-88. PubMed ID: 4735039
    [No Abstract]   [Full Text] [Related]  

  • 7. Fine structure of the nephron in the euryhaline teleost, Oreochromis niloticus.
    Kamunde CN; Kisia SM
    Acta Biol Hung; 1994; 45(1):111-21. PubMed ID: 7740895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The time sequence of response of the prolactin cells of the freshwater teleost, Poecilia reticulata, to an altered environmental salinity.
    Ethridge L; Benjamin M
    Cell Tissue Res; 1977 Aug; 182(3):371-82. PubMed ID: 922811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural features of mitochondria-rich cells in stenohaline freshwater and seawater fishes.
    Pisam M; Boeuf G; Prunet P; Rambourg A
    Am J Anat; 1990 Jan; 187(1):21-31. PubMed ID: 2296908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane ultrastructure in urinary tubules.
    Orci L; Humbert F; Brown D; Perrelet A
    Int Rev Cytol; 1981; 73():183-242. PubMed ID: 7028660
    [No Abstract]   [Full Text] [Related]  

  • 11. Ultrastructure and segmentation of microdissected kidney tubules in the marine flounder, Pleuronectes platessa.
    Ottosen PD
    Cell Tissue Res; 1978 Jun; 190(1):27-45. PubMed ID: 688334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freshwater adaptation in the euryhaline teleost, Chelon labrosus. I. Effects of adaptation, prolactin, cortisol and actinomycin D on plasma osmotic balance and (Na+-K+)ATPase in gill and kidney.
    Gallis JL; Lasserre P; Belloc F
    Gen Comp Endocrinol; 1979 May; 38(1):1-10. PubMed ID: 223943
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparative studies on the ultrastructure of malignant melanoma in fish and human by freeze-etching and transmission electron microscopy.
    Riehl R; Schartl M; Kollinger G
    J Cancer Res Clin Oncol; 1984; 107(1):21-31. PubMed ID: 6699072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure and permeability of intercellular contacts of developing proximal tubule in rat kidney.
    Larsson L
    J Ultrastruct Res; 1975 Jul; 52(1):100-13. PubMed ID: 50455
    [No Abstract]   [Full Text] [Related]  

  • 15. Seasonal changes in the prolactin cell of the pituitary gland of the freshwater stickleback, Gasterosteus aculeatus, form leiurus.
    Benjamin M
    Cell Tissue Res; 1974; 152(1):93-102. PubMed ID: 4442073
    [No Abstract]   [Full Text] [Related]  

  • 16. Lens of the rat eye: an electron microscope and freeze-etch study.
    Leeson TS
    Exp Eye Res; 1971 Jan; 11(1):78-82. PubMed ID: 5130522
    [No Abstract]   [Full Text] [Related]  

  • 17. Changes in urinary bladder and kidney function in the starry flounder (Platichtys stellatus) in response to prolactin and to freshwater transfer.
    Foster RC
    Gen Comp Endocrinol; 1975 Oct; 27(2):153-61. PubMed ID: 1205117
    [No Abstract]   [Full Text] [Related]  

  • 18. Tissue-specific granularity of gap junction cytoplasmic surfaces revealed by rapid-freeze, deep-etch replicas.
    Shibata Y; Izumi T; Yamamoto T
    Anat Rec; 1989 Feb; 223(2):113-20. PubMed ID: 2712338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell junctions in the early chick embryo--a freeze etch study.
    Revel JP; Yip P; Chang LL
    Dev Biol; 1973 Dec; 35(2):302-17. PubMed ID: 4788223
    [No Abstract]   [Full Text] [Related]  

  • 20. Responses of prolactin cells of two euryhaline marine fishes, Gillichthys mirabilis and Platichthys stellatus, to environmental salinity.
    Nagahama Y; Nishioka RS; Bern HA
    Z Zellforsch Mikrosk Anat; 1973; 136(2):153-67. PubMed ID: 4685229
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.