These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4448981)

  • 21. Sensitivity of chemically treated spores of Clostridium perfringens type A to an initiation protein.
    Franceschini TJ; Labbe RG
    Microbios; 1979; 25(100):85-91. PubMed ID: 232233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in spores of Clostridium bifermentans caused by treatment with hydrogen peroxide and cations.
    Waites WM; Wyatt LR; King NR; Bayliss CE
    J Gen Microbiol; 1976 Apr; 93(2):388-96. PubMed ID: 932682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The activation of spores of Clostridium bifermentans.
    Gibbs PA
    J Gen Microbiol; 1967 Feb; 46(2):285-91. PubMed ID: 6029736
    [No Abstract]   [Full Text] [Related]  

  • 24. [Spore germination of Clostridium tyrobutyricum. I. Action of different compounds on the initial phase].
    Bergère JL
    Ann Inst Pasteur (Paris); 1969 Aug; 117(2):179-95. PubMed ID: 5406055
    [No Abstract]   [Full Text] [Related]  

  • 25. The effect of chlorine and heat on spores of Clostridium bifermentans.
    Waites WM; King NR; Bayliss CE
    J Gen Microbiol; 1977 Sep; 102(1):211-3. PubMed ID: 915474
    [No Abstract]   [Full Text] [Related]  

  • 26. Mechanism of nitrite-induced germination of Clostridium perfringens spores.
    Ando Y
    J Appl Bacteriol; 1980 Dec; 49(3):527-35. PubMed ID: 6260726
    [No Abstract]   [Full Text] [Related]  

  • 27. [Sodium taurocholate, a germination factor for anaerobic bacterial spores "in vitro" and "in vivo" (author's transl)].
    Railbaud P; Ducluzeau R; Muller MC; Sacquet E
    Ann Microbiol (Paris); 1974; 125B(3):381-91. PubMed ID: 4282561
    [No Abstract]   [Full Text] [Related]  

  • 28. The effect of oxygen on the germination and outgrowth of Clostridium butyricum spores and changes in the oxidation-reduction potential of cultures.
    Douglas F; Rigby GJ
    J Appl Bacteriol; 1974 Jun; 37(2):251-9. PubMed ID: 4416207
    [No Abstract]   [Full Text] [Related]  

  • 29. An investigation of the oxidation-reduction potential and of the effect of oxygen on the germination and outgrowth of Clostridium butyricum spores, using platinum electrodes.
    Douglas F; Hambleton R; Rigby GJ
    J Appl Bacteriol; 1973 Dec; 36(4):625-33. PubMed ID: 4787611
    [No Abstract]   [Full Text] [Related]  

  • 30. Physical and chemical factors influencing the germination of Clostridium difficile spores.
    Wheeldon LJ; Worthington T; Hilton AC; Elliott TS; Lambert PA
    J Appl Microbiol; 2008 Dec; 105(6):2223-30. PubMed ID: 19120667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of citric acid and GDL in the recovery at different pH levels of Clostridium sporogenes PA 3679 spores subjected to HTST treatment conditions.
    Silla Santos MH; Torres Zarzo J
    Int J Food Microbiol; 1996 Apr; 29(2-3):241-54. PubMed ID: 8796426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M
    Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the effect of a heat shock and germinant concentration on spore germination of a wild strain of Bacillus cereus.
    Collado J; Fernández A; Rodrigo M; Martínez A
    Int J Food Microbiol; 2006 Jan; 106(1):85-9. PubMed ID: 16216372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental effects of hyperbaric oxgen on selected clostridial species. I. In-vitro studies.
    Hill GB; Osterhout S
    J Infect Dis; 1972 Jan; 125(1):17-25. PubMed ID: 4332847
    [No Abstract]   [Full Text] [Related]  

  • 35. Oxygen and the growth and metabolism of Clostridium acetobutylicum.
    O'Brien RW; Morris JG
    J Gen Microbiol; 1971 Nov; 68(3):307-18. PubMed ID: 4332793
    [No Abstract]   [Full Text] [Related]  

  • 36. Inhibition by glycine of the catabolic reduction of proline in Clostridium sticklandii: evidence on the regulation of amino acid reduction.
    Schwartz AC; Quecke W; Brenschede G
    Z Allg Mikrobiol; 1979; 19(3):211-20. PubMed ID: 516795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical properties of Clostridium bifermentans spores.
    Hausenbauer JM; Waites WM; Setlow P
    J Bacteriol; 1977 Feb; 129(2):1148-50. PubMed ID: 402349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth pattern of two types of vitamin B 12 auxotrophic mutants of Clostridium sticklandii.
    Schwartz AC; Stadtman TC
    Z Allg Mikrobiol; 1971; 11(1):63-5. PubMed ID: 5557060
    [No Abstract]   [Full Text] [Related]  

  • 39. Modelling the influence of palmitic, palmitoleic, stearic and oleic acids on apparent heat resistance of spores of Bacillus cereus NTCC 11145 and Clostridium sporogenes Pasteur 79.3.
    Lekogo BM; Coroller L; Mathot AG; Mafart P; Leguerinel I
    Int J Food Microbiol; 2010 Jul; 141(3):242-7. PubMed ID: 20573415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The recovery of clinically important anaerobes on solid media.
    Watt B
    J Med Microbiol; 1972 May; 5(2):211-8. PubMed ID: 4555730
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.