These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4449733)

  • 1. Sequence studies of nonradioactive Mycoplasma tRNA Phe with the aid of polynucleotide phosphorylase and polynucleotide kinase.
    Szeto KS; Soll D
    Nucleic Acids Res; 1974 Dec; 1(12):1733-8. PubMed ID: 4449733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fingerprinting nonradioactive ribonucleic acid with the aid of polynucleotide phosphorylase.
    Szeto KS; Söll D
    Nucleic Acids Res; 1974 Jan; 1(1):171-81. PubMed ID: 10793669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nucleotide sequence of phenylalanine tRNA from Mycoplasma sp. (Kid).
    Kimball ME; Szeto KS; Soll D
    Nucleic Acids Res; 1974 Dec; 1(12):1721-32. PubMed ID: 4375278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleotide sequence of a serine transfer ribonucleic acid from Escherichia coli.
    Ish-Horowicz D; Clark BF
    J Biol Chem; 1973 Oct; 248(19):6663-73. PubMed ID: 4355500
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on polynucleotides containing hybrid sequences. Synthesis of oligonucleotides possessing a single ribonucleotidyl-(3'-5')-deoxyribonucleotide linkage.
    Batey IL; Gilham PT
    Biochemistry; 1974 Dec; 13(26):5395-400. PubMed ID: 4373037
    [No Abstract]   [Full Text] [Related]  

  • 6. A deoxyadenylate kinase activity associated with polynucleotide phosphorylase from Micrococcus luteus.
    Craine JE; Klee CB
    Nucleic Acids Res; 1976 Nov; 3(11):2923-8. PubMed ID: 188014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mg2+-induced primer dependence on polynucleotide phosphorylase from Micrococcus luteus].
    Linder M; Feix G
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1544. PubMed ID: 4649806
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic studies on the phosphorolysis of polynucleotides by polynucleotide phosphorylase.
    Chou JY; Singer MF; McPhie P
    J Biol Chem; 1975 Jan; 250(2):508-14. PubMed ID: 1078670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of dephosphorylated tRNA and oligonucleotides by polynucleotide kinase.
    Hänggi UJ; Streeck RE; Voigt HP; Zachau HG
    Biochim Biophys Acta; 1970 Oct; 217(2):278-93. PubMed ID: 4919649
    [No Abstract]   [Full Text] [Related]  

  • 10. Stereochemistry of internucleotide bond formation by polynucleotide phosphorylase from Micrococcus luteus.
    Burgers PM; Eckstein F
    Biochemistry; 1979 Feb; 18(3):450-4. PubMed ID: 420791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of polyamines on the degradation of ribonucleic acids by polynucleotide phosphorylase of Micrococcus luteus.
    Igarashi K; Kumagai H; Oguchi H; Hirose S
    J Biochem; 1977 Feb; 81(2):389-94. PubMed ID: 14945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polynucleotides; partial purification and properties of a polynucleotide phosphorylase from Micrococcus lysodeikticus.
    BEERS RF
    Biochem J; 1957 Aug; 66(4):686-93. PubMed ID: 13459919
    [No Abstract]   [Full Text] [Related]  

  • 13. Isomeric phenylalanyl-tRNAs. Position of the aminoacyl moiety during protein biosynthesis.
    Hecht SM; Kozarich JW; Schmidt FJ
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4317-21. PubMed ID: 4612516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phenylalanine tRNA from Mycoplasma sp. (Kid): a tRNA lacking hypermodified nucleosides functional in protein synthesis.
    Kimball ME; Soll D
    Nucleic Acids Res; 1974 Dec; 1(12):1713-20. PubMed ID: 4615304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent joining of phenylalanine transfer ribonucleic acid half-molecules by T4 RNA ligase.
    Kaufmann G; Littauer UZ
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3741-5. PubMed ID: 4610584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polynucleotide phosphorylase of Micrococcus lysodeiktpcus. III. The apparent arsenolysis of nucleoside diphosphates by polynucleotide phosphorylase.
    SINGER MF
    J Biol Chem; 1963 Jan; 238():336-43. PubMed ID: 13977613
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzymatic synthesis of oligonucleotides of defined sequence. Addition of short blocks of nucleotide residues to oligonucleotide primers.
    Gillam S; Waterman K; Smith M
    Nucleic Acids Res; 1975 May; 2(5):613-24. PubMed ID: 167349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical and coding properties of poly(5-methoxyuridylic) acid.
    Hillen W; Gassen HG
    Biochim Biophys Acta; 1979 Apr; 562(2):207-13. PubMed ID: 375983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A METHOD FOR OBTAINING LONG-CHAIN POLYNUCLEOTIDES WITH POLYNUCLEOTIDE PHOSPHORYLASE FROM MICROCOCCUS LYSODEIKTICUS].
    STAHL J; HEUMANN W
    Acta Biol Med Ger; 1965; 14():108-13. PubMed ID: 14277099
    [No Abstract]   [Full Text] [Related]  

  • 20. Codon-anticodon interaction studied with oligonucleotides containing 3 -deazauridine, 4 -deoxyuridine or 3 -deaza- 4 -deoxyuridine. I. Synthesis by primer-dependent polynucleotide phosphorylase of oligonucleotides containing modofied nucleosides.
    Schetters H; Gassen HG; Matthaei H
    Biochim Biophys Acta; 1972 Jul; 272(4):549-59. PubMed ID: 4340554
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.