These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Carrier and non-carrier models for sugar transport in the human red blood cell. Lieb WR; Stein WD Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470 [No Abstract] [Full Text] [Related]
3. Ligand-protein interaction in biomembrane carriers. The induced transition fit of transport catalysis. Klingenberg M Biochemistry; 2005 Jun; 44(24):8563-70. PubMed ID: 15952762 [TBL] [Abstract][Full Text] [Related]
4. Cellular enzymology: the steady-state kinetics of compartmentalized enzymes. Bunow B J Theor Biol; 1980 Jun; 84(4):611-27. PubMed ID: 7431943 [No Abstract] [Full Text] [Related]
5. Enzyme kinetics. Thermodynamic constraints on assignment of rate coefficients to kinetic models. Wagg J; Sellers PH Ann N Y Acad Sci; 1996 Apr; 779():272-8. PubMed ID: 8659834 [No Abstract] [Full Text] [Related]
6. Theoretical analysis of the significance of whether or not enzymes or transport systems in structured media follow Michaelis-Menten kinetics. Vincent JC; Thellier M Biophys J; 1983 Jan; 41(1):23-8. PubMed ID: 6824750 [TBL] [Abstract][Full Text] [Related]
7. [Models of membrane transport mechanisms]. Wilbrandt W Arzneimittelforschung; 1972 Dec; 22(12):2017-9. PubMed ID: 4679166 [No Abstract] [Full Text] [Related]
8. A perm-selective model membrane exhibiting oscillatory behavior. Tagami Y J Theor Biol; 1978 Aug; 73(4):739-54. PubMed ID: 703345 [No Abstract] [Full Text] [Related]
9. Testing and characterizing enzymes and membrane-bound carrier proteins acting on amphipathic ligands in the presence of bilayer membrane material and soluble binding protein. Application to the uptake of oleate into isolated cells. Heirwegh KP; Meuwissen JA Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):353-61. PubMed ID: 1599418 [TBL] [Abstract][Full Text] [Related]
11. Allosteric and related phenomena: an analysis of sigmoid and non-hyperbolic functions. Childs RE; Bardsley WG J Theor Biol; 1975 Mar; 50(1):45-58. PubMed ID: 1127963 [No Abstract] [Full Text] [Related]
12. Double-site enzymes and squatting. A study of the regulation by one or several ligands binding at two different classes of site. Mazat JP; Langla J; Mazat F J Theor Biol; 1977 Oct; 68(3):365-83. PubMed ID: 599941 [No Abstract] [Full Text] [Related]
13. Flip-flop model of (NaK)-ATPase function. Repke KR; Schön R Acta Biol Med Ger; 1973; 31(4):Suppl:K19-30. PubMed ID: 4273704 [No Abstract] [Full Text] [Related]
14. Cooperativity in enzyme function: equilibrium and kinetic aspects. Neet KE Methods Enzymol; 1980; 64():139-92. PubMed ID: 7374452 [No Abstract] [Full Text] [Related]
15. The effect of viscosity on the apparent decomposition rate on enzyme--ligand complexes. Somogyi B; Karasz FE; Trón L; Couchman PR J Theor Biol; 1978 Sep; 74(2):209-16. PubMed ID: 713574 [No Abstract] [Full Text] [Related]
16. Transport of -aminoisobutyric acid in Saccharomyces cerevisiae. Kotyk A; Ríhová L Biochim Biophys Acta; 1972 Nov; 288(2):380-9. PubMed ID: 4563235 [No Abstract] [Full Text] [Related]
17. Release of enzymes from cells: transport and distribution within the extracellular space. Mattenheimer H; Friedel R Ann Clin Lab Sci; 1977; 7(4):344-51. PubMed ID: 900861 [TBL] [Abstract][Full Text] [Related]