These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4456041)

  • 21. [Influence of motor activity (countercurrent swimming) on the blood 17-hydroxycorticosteroids of the rainbow trout (Salmo gairdnerii Rich). Probable intervention of this factor in the activation of the anterior interrenal of the young salmon (Salmo salar L.) during downstream migration].
    FONTAINE M; LELOUP-HATEY J
    C R Hebd Seances Acad Sci; 1960 May; 250():3089-94. PubMed ID: 13823814
    [No Abstract]   [Full Text] [Related]  

  • 22. Influence of ambient oxygen on the swimming performance of goldfish and rainbow trout.
    Kutty MN
    Can J Zool; 1968 Jul; 46(4):647-53. PubMed ID: 5724483
    [No Abstract]   [Full Text] [Related]  

  • 23. Substantial energy expenditure for locomotion in ciliates verified by means of simultaneous measurement of oxygen consumption rate and swimming speed.
    Katsu-Kimura Y; Nakaya F; Baba SA; Mogami Y
    J Exp Biol; 2009 Jun; 212(Pt 12):1819-24. PubMed ID: 19482999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Locomotion: energy cost of swimming, flying, and running.
    Schmidt-Nielsen K
    Science; 1972 Jul; 177(4045):222-8. PubMed ID: 4557340
    [No Abstract]   [Full Text] [Related]  

  • 25. Do method and species lifestyle affect measures of maximum metabolic rate in fishes?
    Killen SS; Norin T; Halsey LG
    J Fish Biol; 2017 Mar; 90(3):1037-1046. PubMed ID: 27778342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimates of metabolic rate and major constituents of metabolic demand in fishes under field conditions: Methods, proxies, and new perspectives.
    Treberg JR; Killen SS; MacCormack TJ; Lamarre SG; Enders EC
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Dec; 202():10-22. PubMed ID: 27139083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function.
    Gamperl AK; Rodnick KJ; Faust HA; Venn EC; Bennett MT; Crawshaw LI; Keeley ER; Powell MS; Li HW
    Physiol Biochem Zool; 2002; 75(5):413-31. PubMed ID: 12529843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directed motion in the sea: efficient swimming by reef fish larvae.
    Armsworth PR
    J Theor Biol; 2001 May; 210(1):81-91. PubMed ID: 11343432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of dissolved oxygen level on the metabolic interaction between digestion and locomotion in juvenile southern catfish (Silurus meridionalis Chen).
    Zhang W; Cao ZD; Peng JL; Chen BJ; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Nov; 157(3):212-9. PubMed ID: 20601052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boxfishes as unusually well-controlled autonomous underwater vehicles.
    Gordon MS; Hove JR; Webb PW; Weihs D
    Physiol Biochem Zool; 2000; 73(6):663-71. PubMed ID: 11121341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.
    Eliason EJ; Farrell AP
    J Fish Biol; 2016 Jan; 88(1):359-88. PubMed ID: 26577675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure.
    De Boeck G; van der Ven K; Hattink J; Blust R
    Aquat Toxicol; 2006 Oct; 80(1):92-100. PubMed ID: 16956679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure to sublethal levels of PCB-126 impacts fuel metabolism and swimming performance in rainbow trout.
    Bellehumeur K; Lapointe D; Cooke SJ; Moon TW
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Sep; 199():97-104. PubMed ID: 26803990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How fish power swimming.
    Rome LC; Swank D; Corda D
    Science; 1993 Jul; 261(5119):340-3. PubMed ID: 8332898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Routine and active metabolic rates of migrating adult wild sockeye salmon (Oncorhynchus nerka Walbaum) in seawater and freshwater.
    Wagner GN; Kuchel LJ; Lotto A; Patterson DA; Shrimpton JM; Hinch SG; Farrell AP
    Physiol Biochem Zool; 2006; 79(1):100-8. PubMed ID: 16380931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Swimming rhythm in decerebrated, paralyzed stingrays: normal and abnormal coupling.
    Droge MH; Leonard RB
    J Neurophysiol; 1983 Jul; 50(1):178-91. PubMed ID: 6875646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The efficiency of energy conversion by swimming muscles of fish.
    Woledge RC; Curtin NA
    Adv Exp Med Biol; 1993; 332():735-43; discussion 744-7. PubMed ID: 8109384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using a dynamic bioenergetics-bioaccumulation model to understand mechanisms of uptake and bioaccumulation of salmon-derived contaminants by stream-resident fish.
    Gerig BS; Hermann NT; Chaloner DT; Lamberti GA
    Sci Total Environ; 2019 Feb; 652():633-642. PubMed ID: 30380471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.