These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 445703)

  • 1. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.
    Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC
    Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle.
    Wu J; Johnson EA; Kootsey JM
    Biophys J; 1996 Nov; 71(5):2427-39. PubMed ID: 8913583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax, tau foot, and the propagation safety factor.
    Spach MS; Dolber PC; Heidlage JF; Kootsey JM; Johnson EA
    Circ Res; 1987 Feb; 60(2):206-19. PubMed ID: 2436826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.
    Spach MS; Dolber PC
    Circ Res; 1986 Mar; 58(3):356-71. PubMed ID: 3719925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities.
    Plonsey R; Barr RC
    Biophys J; 1984 Mar; 45(3):557-71. PubMed ID: 6713068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog.
    Roberts DE; Hersh LT; Scher AM
    Circ Res; 1979 May; 44(5):701-12. PubMed ID: 428066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle.
    Roberge FA; Vinet A; Victorri B
    Circ Res; 1986 Apr; 58(4):461-75. PubMed ID: 3698214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic conduction properties of canine ventricular muscles. Influence of high extracellular K+ concentration and stimulation frequency.
    Tsuboi N; Kodama I; Toyama J; Yamada K
    Jpn Circ J; 1985 May; 49(5):487-98. PubMed ID: 4021064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models.
    Wei D; Okazaki O; Harumi K; Harasawa E; Hosaka H
    IEEE Trans Biomed Eng; 1995 Apr; 42(4):343-57. PubMed ID: 7729834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action currents, internodal potentials, and extracellular records of myelinated mammalian nerve fibers derived from node potentials.
    Marks WB; Loeb GE
    Biophys J; 1976 Jun; 16(6):655-68. PubMed ID: 1276389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.
    Fast VG; Darrow BJ; Saffitz JE; Kléber AG
    Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrative model of mouse cardiac electrophysiology from cell to torso.
    Tranquillo JV; Hlavacek J; Henriquez CS
    Europace; 2005 Sep; 7 Suppl 2():56-70. PubMed ID: 16102504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation time determination by high-resolution unipolar and bipolar extracellular electrograms in the canine heart.
    Ndrepepa G; Caref EB; Yin H; el-Sherif N; Restivo M
    J Cardiovasc Electrophysiol; 1995 Mar; 6(3):174-88. PubMed ID: 7620643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sampling rates required for digital recording of intracellular and extracellular cardiac potentials.
    Barr RC; Spach MS
    Circulation; 1977 Jan; 55(1):40-8. PubMed ID: 318576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of cellular electrophysiology to the understanding of the electrocardiogram.
    Surawicz B
    Experientia; 1987 Oct; 43(10):1061-8. PubMed ID: 2444451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrophysiological properties of normal neonatal and adult canine cardiac Purkinje fibers.
    Reder RF; Miura DS; Danilo P; Rosen MR
    Circ Res; 1981 May; 48(5):658-68. PubMed ID: 7214674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of passive properties and action potential conduction in an idealized bullfrog atrial trabeculum.
    Shumaker JM; Clark JW; Giles WR
    Math Biosci; 1993 Aug; 116(2):127-67. PubMed ID: 8369597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical constants of arterially perfused rabbit papillary muscle.
    Kléber AG; Riegger CB
    J Physiol; 1987 Apr; 385():307-24. PubMed ID: 3656162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.
    Babbs CF
    Cardiovasc Eng; 2009 Jun; 9(2):59-71. PubMed ID: 19543975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.