These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Membrane transport against the external driving force due to mass transfer-reaction coupling. Bailey JE; Luss D Proc Natl Acad Sci U S A; 1972 Jun; 69(6):1460-3. PubMed ID: 4504359 [TBL] [Abstract][Full Text] [Related]
25. Theoretical model studies of intestinal drug absorption. IV. Bile acid transport at premicellar concentrations across diffusion layer-membrane barrier. Ho NF; Higuchi WI J Pharm Sci; 1974 May; 63(5):686-90. PubMed ID: 4829987 [No Abstract] [Full Text] [Related]
26. Molecular aspects of electrical excitation in lipid bilayers and cell membranes. Mueller P Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770 [TBL] [Abstract][Full Text] [Related]
27. Low permeabilities of MDCK cell monolayers: a model barrier epithelium. Lavelle JP; Negrete HO; Poland PA; Kinlough CL; Meyers SD; Hughey RP; Zeidel ML Am J Physiol; 1997 Jul; 273(1 Pt 2):F67-75. PubMed ID: 9249593 [TBL] [Abstract][Full Text] [Related]
28. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Holz RW Ann N Y Acad Sci; 1974 May; 235(0):469-79. PubMed ID: 4528030 [No Abstract] [Full Text] [Related]
29. An analysis of unstirred layers in series with "tight" and "porous" lipid bilayer membranes. Andreoli TE; Troutman SL J Gen Physiol; 1971 Apr; 57(4):464-78. PubMed ID: 5549099 [TBL] [Abstract][Full Text] [Related]
30. Models of ionic currents for excitable membranes. Roy G Prog Biophys Mol Biol; 1975; 29(1):57-104. PubMed ID: 1094491 [No Abstract] [Full Text] [Related]
31. Some peculiarities of water transport through plasticized nonporous membranes. Marian S; Jagur-Grodzinski J; Kedem O; Vofsi D Biophys J; 1970 Sep; 10(9):901-10. PubMed ID: 5496907 [TBL] [Abstract][Full Text] [Related]
33. Transient permeability of a model lipid membrane to 22Na+. Petkau A; Chelack WS Biochim Biophys Acta; 1970 Mar; 203(1):34-46. PubMed ID: 5445678 [No Abstract] [Full Text] [Related]
34. Spherical lipid bilayer membranes: electrical and isotopic studies of ion permeability. Pagano R; Thompson TE J Mol Biol; 1968 Nov; 38(1):41-57. PubMed ID: 5760634 [No Abstract] [Full Text] [Related]
35. Statistical-mechanical theory of passive transport through semipermeable membranes. del Castillo LF; Mason EA; Revercomb HE Biophys Chem; 1979 Sep; 10(2):191-201. PubMed ID: 486702 [TBL] [Abstract][Full Text] [Related]
36. Permeability characteristics of complement-damaged membranes: evaluation of the membrane leak generated by the complement proteins C5b-9. Sims PJ Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1838-42. PubMed ID: 6940192 [TBL] [Abstract][Full Text] [Related]
37. Semiconductor theory of ion transport in thin lipid membranes. I. Potential and field distributions. Wei LY; Woo BY Bull Math Biol; 1974 Jun; 36(3):229-46. PubMed ID: 4418425 [No Abstract] [Full Text] [Related]
38. Properties of membrane stationary states. I. The microcanonical membranes. Starzak ME J Membr Biol; 1973 Aug; 13(1):37-60. PubMed ID: 4752451 [No Abstract] [Full Text] [Related]
39. A predictive algorithm for skin permeability: the effects of molecular size and hydrogen bond activity. Potts RO; Guy RH Pharm Res; 1995 Nov; 12(11):1628-33. PubMed ID: 8592661 [TBL] [Abstract][Full Text] [Related]
40. Amphiphilic networks. X. Diffusion of glucose and insulin (and nondiffusion of albumin) through amphiphilic membranes. Shamlou S; Kennedy JP; Levy RP J Biomed Mater Res; 1997 May; 35(2):157-63. PubMed ID: 9135164 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]