These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4459031)

  • 1. Effect of 3-trifluormethyl-4-nitrophenol on in vitro tissue respiration of four species of fish with preliminary notes on its in vitro biotransformation.
    Kawatski JA; McDonald MJ
    Comp Gen Pharmacol; 1974 Mar; 5(1):67-76. PubMed ID: 4459031
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of glucuronide formation in the selective toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) for the sea lamprey: comparative aspects of TFM uptake and conjugation in sea lamprey and rainbow trout.
    Lech JJ; Statham CN
    Toxicol Appl Pharmacol; 1975 Jan; 31(1):150-8. PubMed ID: 1129784
    [No Abstract]   [Full Text] [Related]  

  • 3. Glucuronide formation in rainbow trout--effect of salicylamide on the acute toxicity, conjugation and excretion of 3-trifluoromethyl-4-nitrophenol.
    Lech JJ
    Biochem Pharmacol; 1974 Sep; 23(17):2403-10. PubMed ID: 4429574
    [No Abstract]   [Full Text] [Related]  

  • 4. The influence of larval lampricide (TFM:3-trifluormethyl-4-nitrophenol) on growth and production of two species of aquatic macrophytes, Elodea canadensis (Michx.) Planchon and Myriophyllum spicatum L.
    Maki AW; Johnson HE
    Bull Environ Contam Toxicol; 1977 Jan; 17(1):57-65. PubMed ID: 556965
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of beta-D-glucosiduronic acid conjugation by eugenol.
    Hartiala KJ; Pulkkinen M; Ball P
    Nature; 1966 May; 210(5037):739-40. PubMed ID: 5961205
    [No Abstract]   [Full Text] [Related]  

  • 6. Uptake, metabolism, and elimination of the lampricide 3-trifluoromethyl-4-nitrophenol by largemouth bass (Micropterus salmoides).
    Schultz DP; Harman PD; Luhning CW
    J Agric Food Chem; 1979; 27(2):328-31. PubMed ID: 429689
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of nalorphine on the in vitro morphine metabolism and on the p-nitrophenol conjugation in rat liver.
    Tampier L; Sanchez E; Mardones J
    Arch Int Pharmacodyn Ther; 1970 Dec; 188(2):290-7. PubMed ID: 5523475
    [No Abstract]   [Full Text] [Related]  

  • 8. Glycogenolysis--and not gluconeogenesis--is the source of UDP-glucuronic acid for glucuronidation.
    Bánhegyi G; Garzó T; Antoni F; Mandl J
    Biochim Biophys Acta; 1988 Dec; 967(3):429-35. PubMed ID: 3196758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucuronic acid conjugation of tetrahydrocortisone and p-nitrophenol in the homozygous Gunn rat.
    Drucker WD
    Proc Soc Exp Biol Med; 1968 Oct; 129(1):308-11. PubMed ID: 5686533
    [No Abstract]   [Full Text] [Related]  

  • 10. Sea lamprey cardiac mitochondrial bioenergetics after exposure to TFM and its metabolites.
    Huerta B; Chung-Davidson YW; Bussy U; Zhang Y; Bazil JN; Li W
    Aquat Toxicol; 2020 Feb; 219():105380. PubMed ID: 31855722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylalcohol inhibition of brain mitochondrial respiration stimulated by dinitrophenol.
    Nukada T; Ando N
    Jpn J Pharmacol; 1967 Jun; 17(2):325-6. PubMed ID: 5299990
    [No Abstract]   [Full Text] [Related]  

  • 12. Species characteristics of the hepatic xenobiotic and steroid biotransformation systems of two teleost fish, Atlantic cod (Gadus morhua) and rainbow trout (Salmo gairdneri).
    Goksøyr A; Andersson T; Hansson T; Klungsøyr J; Zhang Y; Förlin L
    Toxicol Appl Pharmacol; 1987 Jul; 89(3):347-60. PubMed ID: 3496689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of paraoxon and p-nitrophenol by isolated perfused mouse livers.
    Sultatos LG; Minor LD
    Toxicology; 1985 Aug; 36(2-3):159-69. PubMed ID: 4049428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen and phosphate metabolism of bluegill liver mitochondria in the presence of some pesticides.
    Hiltibran RC
    Environ Qual Saf Suppl; 1975; 3():549-53. PubMed ID: 1063679
    [No Abstract]   [Full Text] [Related]  

  • 15. Oxidative and conjugative metabolism of p-nitroanisole and p-nitrophenol in isolated rat liver cells.
    Moldéus P; Vadi H; Berggren M
    Acta Pharmacol Toxicol (Copenh); 1976 Jul; 39(1):17-32. PubMed ID: 988967
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation and identification of 3-trifluoromethyl-4-nitrophenyl glucuronide from bile of rainbow trout exposed to 3-trifluoromethyl-4-nitrophenol.
    Lech JJ
    Toxicol Appl Pharmacol; 1973 Jan; 24(1):114-24. PubMed ID: 4686778
    [No Abstract]   [Full Text] [Related]  

  • 17. Uptake, tissue distribution, and clearance of the selective piscicide 1,1'-methylenedi-2-naphthol (Squoxin) by the rainbow trout and the squawfish.
    Terriere LC; Burnard RJ
    J Agric Food Chem; 1975; 23(4):714-7. PubMed ID: 1141520
    [No Abstract]   [Full Text] [Related]  

  • 18. The susceptibility of rainbow trout to fluoroacetate.
    Bauermeister A; Thompson CJ; Nimmo IA
    Biochem Soc Trans; 1977; 5(1):304-6. PubMed ID: 892192
    [No Abstract]   [Full Text] [Related]  

  • 19. The beta-glucosidation and beta-glucuronidation of pantothenic acid compared with p-nitrophenol in dog liver microsome.
    Nakano K; Ohashi M; Harigaya S
    Chem Pharm Bull (Tokyo); 1986 Sep; 34(9):3949-52. PubMed ID: 3815615
    [No Abstract]   [Full Text] [Related]  

  • 20. Hepatocytes as in vitro test system to investigate metabolite patterns of pesticides in farmed rainbow trout and common carp: Comparison between in vivo and in vitro and across species.
    Bischof I; Köster J; Segner H; Schlechtriem C
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Sep; 187():62-73. PubMed ID: 27185525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.