These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4459129)

  • 21. Gene expression profiling in rat cerebellum following in utero and lactational exposure to mixtures of methylmercury, polychlorinated biphenyls and organochlorine pesticides.
    Padhi BK; Pelletier G; Williams A; Berndt-Weis L; Yauk C; Bowers WJ; Chu I
    Toxicol Lett; 2008 Jan; 176(2):93-103. PubMed ID: 18077114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of methylmercury on microsomal mixed-function oxidase components of rodents.
    Lucier GW; Matthews HB; Brubaker PE; Klein R; McDaniel OS
    Mol Pharmacol; 1973 Mar; 9(2):237-46. PubMed ID: 4711700
    [No Abstract]   [Full Text] [Related]  

  • 23. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum.
    Basu N; Stamler CJ; Loua KM; Chan HM
    Toxicol Appl Pharmacol; 2005 May; 205(1):71-6. PubMed ID: 15885266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effects of methylmercury on gamma-aminobutyric acid type A receptor currents in rat cerebellar granule and cerebral cortical neurons in culture.
    Herden CJ; Pardo NE; Hajela RK; Yuan Y; Atchison WD
    J Pharmacol Exp Ther; 2008 Feb; 324(2):517-28. PubMed ID: 17977981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perinatal co-exposure to methylmercury and PCB153 or PCB126 in rats alters the cerebral cholinergic muscarinic receptors at weaning and puberty.
    Coccini T; Roda E; Castoldi AF; Goldoni M; Poli D; Bernocchi G; Manzo L
    Toxicology; 2007 Aug; 238(1):34-48. PubMed ID: 17618726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporation of ( 35 S) sulphate into brain constituents during development and the effects of thyroid hormone on myelination.
    Balázs R; Brooksbank BW; Patel AJ; Johnson AL; Wilson DA
    Brain Res; 1971 Jul; 30(2):273-93. PubMed ID: 5099171
    [No Abstract]   [Full Text] [Related]  

  • 27. Methylmercury induces a spontaneous, transient slow inward chloride current in Purkinje cells of rat cerebellar slices.
    Yuan Y; Atchison WD
    J Pharmacol Exp Ther; 2005 May; 313(2):751-64. PubMed ID: 15687375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dose and duration related methylmercury deposition, glycosidases inhibition, myelin degeneration and chelation therapy.
    Vinay SD; Raghu KG; Sood PP
    Cell Mol Biol; 1990; 36(5):609-23. PubMed ID: 2073685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polychlorinated biphenyls and methylmercury alter intracellular calcium concentrations in rat cerebellar granule cells.
    Bemis JC; Seegal RF
    Neurotoxicology; 2000 Dec; 21(6):1123-34. PubMed ID: 11233759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical effects of thyroid hormones in the developing brain.
    Balãzs R
    UCLA Forum Med Sci; 1971; 14():273-320. PubMed ID: 4945482
    [No Abstract]   [Full Text] [Related]  

  • 31. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity.
    Mori N; Yasutake A; Hirayama K
    Arch Toxicol; 2007 Nov; 81(11):769-76. PubMed ID: 17464500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of sodium selenite on methylmercury-induced cell death and on mercury accumulation in rat cerebellar neurons in primary culture.
    Sakaue M; Adachi T; Okazaki M; Nakamura H; Mori N; Hara S; Sakabe K
    Bull Environ Contam Toxicol; 2006 Nov; 77(5):779-84. PubMed ID: 17177009
    [No Abstract]   [Full Text] [Related]  

  • 33. Contribution of methylmercury, polychlorinated biphenyls and organochlorine pesticides to the toxicity of a contaminant mixture based on Canadian Arctic population blood profiles.
    Pelletier G; Masson S; Wade MJ; Nakai J; Alwis R; Mohottalage S; Kumarathasan P; Black P; Bowers WJ; Chu I; Vincent R
    Toxicol Lett; 2009 Feb; 184(3):176-85. PubMed ID: 19059321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pathogenesis of hexachlorophene neuropathy: in vivo and in vitro studies.
    Pleasure D; Towfighi J; Silberberg D; Parris J
    Neurology; 1974 Nov; 24(11):1068-75. PubMed ID: 4371455
    [No Abstract]   [Full Text] [Related]  

  • 35. Methylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices.
    Yuan Y; Atchison WD
    Mol Pharmacol; 2007 Apr; 71(4):1109-21. PubMed ID: 17244699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of triethyllead on post-translational processing of myelin proteins.
    Konat G; Offner H
    Exp Neurol; 1982 Jan; 75(1):89-94. PubMed ID: 7060684
    [No Abstract]   [Full Text] [Related]  

  • 37. Developmental lead neurotoxicity: alterations in brain cholinergic system.
    Reddy GR; Devi BC; Chetty CS
    Neurotoxicology; 2007 Mar; 28(2):402-7. PubMed ID: 16678265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acetylcholinesterase activity in the brain of rat pups and dams after exposure to lead via the maternal water supply.
    Gietzen DW; Woolley DE
    Neurotoxicology; 1984; 5(3):235-46. PubMed ID: 6542979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of vincristine on the myelination of the corpus callosum in postnatal development].
    Maziarz LJ
    Neuropatol Pol; 1983; 21(4):475-85. PubMed ID: 6669228
    [No Abstract]   [Full Text] [Related]  

  • 40. Lead-induced alteration of apoptotic proteins in different regions of adult rat brain.
    Kiran Kumar B; Prabhakara Rao Y; Noble T; Weddington K; McDowell VP; Rajanna S; Bettaiya R
    Toxicol Lett; 2009 Jan; 184(1):56-60. PubMed ID: 19026729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.