These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 4459998)

  • 1. [The transport of three flavonoids through artificial and biological membranes. The transport in vitro through a cellophane membrane].
    Crevoisier C; Buriet P; Boucherat J
    Pharm Acta Helv; 1974; 49(3-4):140-51. PubMed ID: 4459998
    [No Abstract]   [Full Text] [Related]  

  • 2. [The transport of 3 flavonoids through artificial and biological membranes. First communication. In vitro transport through a cellophane membrane].
    Crevoisier C; Buri P; Boucherat J
    Pharm Acta Helv; 1974; 49(3-4):140-51. PubMed ID: 4438388
    [No Abstract]   [Full Text] [Related]  

  • 3. Drug diffusion and bioavailability: tetracycline metallic chelation.
    Chin TF; Lach JL
    Am J Hosp Pharm; 1975 Jun; 32(6):625-9. PubMed ID: 239596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of polysorbate 20 on the transfer of salicylic acid across a Cellophane membrane.
    Withington R; Collett JH
    J Pharm Pharmacol; 1972 Dec; 24():Suppl:131P. PubMed ID: 4144852
    [No Abstract]   [Full Text] [Related]  

  • 5. A simple method of ultrafiltration as a preliminary step in the separation of calcium fractions in biological fluids.
    Smarsz C
    Pol Med J; 1968; 7(2):343-9. PubMed ID: 5658049
    [No Abstract]   [Full Text] [Related]  

  • 6. [Transport of three flavonoids across artificial and biological membranes. Second communication. Transport across membranes of lipid composition].
    Crevoisier C; Buri P; Boucherat J
    Pharm Acta Helv; 1975; 50(4):103-8. PubMed ID: 1135232
    [No Abstract]   [Full Text] [Related]  

  • 7. [The transport of three flavonoids across artificial and biological membranes. Transport in vitro across a liquid, organic membrane in a 3 phase model].
    Crevoisier C; Buri P; Boucherat J
    Pharm Acta Helv; 1975; 50(5):159-64. PubMed ID: 238219
    [No Abstract]   [Full Text] [Related]  

  • 8. Lidocaine transport through a cellophane membrane by alternating current iontophoresis with a duty cycle.
    Hayashi S; Ogami S; Shibaji T; Umino M
    Bioelectrochemistry; 2009 Feb; 74(2):315-22. PubMed ID: 19110474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(L-lysine) as a model drug macromolecule with which to investigate secondary structure and microporous membrane transport, part 2: diffusion studies.
    Chittchang M; Salamat-Miller N; Alur HH; Vander Velde DG; Mitra AK; Johnston TP
    J Pharm Pharmacol; 2002 Nov; 54(11):1497-505. PubMed ID: 12495552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transfer of salicylic acid across a cellophane membrane from micellar solutions of polysorbates 20 and 80.
    Withington R; Collett JH
    J Pharm Pharmacol; 1973 Apr; 25(4):273-80. PubMed ID: 4146677
    [No Abstract]   [Full Text] [Related]  

  • 11. [Calculation of the concentration Rayleigh number for isothermal transport processes across a polymeric membrane by a method for measuring diffusion flux in three component non-electrolytic solutions].
    Slezak A; Wasik J; Sieroń A
    Polim Med; 1998; 28(3-4):11-22. PubMed ID: 10093153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of membrane permeability in a steady-state asymmetric system. The Donnan system with a cellophane membrane as a model of ion exchange through cell membranes].
    Vereninov AA
    Tsitologiia; 1971 Aug; 13(8):977-88. PubMed ID: 5117438
    [No Abstract]   [Full Text] [Related]  

  • 13. Design, data analysis, and simulation of in vitro drug transport kinetic experiments using a mechanistic in vitro model.
    Poirier A; Lavé T; Portmann R; Brun ME; Senner F; Kansy M; Grimm HP; Funk C
    Drug Metab Dispos; 2008 Dec; 36(12):2434-44. PubMed ID: 18809732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Conduction mechanism of synthetic phospholipid membranes in the presence of ion carriers].
    Markin VS; Krishtalik LI; Liberman EA; Topaly VP
    Biofizika; 1969; 14(2):256-64. PubMed ID: 5398276
    [No Abstract]   [Full Text] [Related]  

  • 15. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.
    Berginc K; Zakelj S; Levstik L; Ursic D; Kristl A
    Eur J Pharm Biopharm; 2007 May; 66(2):281-5. PubMed ID: 17129714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water transport in biological and artificial membranes.
    Schafer JA; Andreoli TE
    Arch Intern Med; 1972 Feb; 129(2):279-92. PubMed ID: 5058551
    [No Abstract]   [Full Text] [Related]  

  • 17. [The diffusion of diphenylhydantoin across the cellophane membrane of the artificial kidney in a patient with uremia and epilepsy].
    Desjacques P
    Schweiz Rundsch Med Prax; 1972 Mar; 61(13):418-23. PubMed ID: 5020101
    [No Abstract]   [Full Text] [Related]  

  • 18. A comparison of electrochemical and electrokinetic parameters determined for cellophane membranes in contact with NaCl and NaNO3 solutions.
    Cañas A; Ariza MJ; Benavente J
    J Colloid Interface Sci; 2002 Feb; 246(1):150-6. PubMed ID: 16290395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic dialysis as a method for studying protein binding. I. Factors affecting the kinetics of dialysis through a cellophane membrane.
    Meyer MC; Guttman DE
    J Pharm Sci; 1970 Jan; 59(1):33-8. PubMed ID: 5411322
    [No Abstract]   [Full Text] [Related]  

  • 20. Modulating the release kinetics through the control of the permeability of the layer-by-layer assembly: a review.
    Mansouri S; Winnik FM; Tabrizian M
    Expert Opin Drug Deliv; 2009 Jun; 6(6):585-97. PubMed ID: 19480609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.