These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4460226)

  • 1. Effect of noradrenaline on muscle blood flow measured by 133-Xe-washout at rest and during post-exercise hyperemia in man.
    Bernstein K; White T
    Scand J Clin Lab Invest; 1974 Dec; 34(4):311-4. PubMed ID: 4460226
    [No Abstract]   [Full Text] [Related]  

  • 2. The effects of norepinephrine on active hyperemia in the canine gracilis muscle.
    Flaim SF; Crede W; Beech A; Nellis SH; Zelis R
    Circ Res; 1979 May; 44(5):660-6. PubMed ID: 428062
    [No Abstract]   [Full Text] [Related]  

  • 3. Leg muscle blood flow during reactive hyperemia. Effects of different body positions, and of subatmospheric pressure.
    Hartling O; Noer I; Trap-Jensen J
    Pflugers Arch; 1976 Nov; 366(2-3):131-5. PubMed ID: 1033515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Perfusion measurements on the lower leg during rest, following arterial constriction, during and following muscular exertion using amplified oscillography, venous occlusion plethysmography and tissue clearance of xenon 133].
    Kaltenbach M; Martin KL; Hengst W
    Klin Wochenschr; 1968 Mar; 46(5):238-42. PubMed ID: 5697851
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of close arterial infusion of noradrenaline on the hyperemia following short-term compared with prolonged forearm exercise.
    Eklund B; Kaijser L
    Life Sci I; 1972 Sep; 11(18):877-82. PubMed ID: 4656107
    [No Abstract]   [Full Text] [Related]  

  • 6. Hyperosmolality and vasodilatation in human skeletal muscle.
    Lundvall J; Mellander S; White T
    Acta Physiol Scand; 1969; 77(1):224-33. PubMed ID: 5348352
    [No Abstract]   [Full Text] [Related]  

  • 7. [The 133-Xenon-clearance of muscles in the upper extremities (author's transl)].
    Held K; Schreier A
    Klin Wochenschr; 1974 Aug; 52(15):728-35. PubMed ID: 4606016
    [No Abstract]   [Full Text] [Related]  

  • 8. Capillary diffusion capacity of sodium studied by the clearances of Na-24 and Xe-133 from hyperemic skeletal muscle in man.
    Lassen NA
    Scand J Clin Lab Invest Suppl; 1967; 99():24-6. PubMed ID: 6056928
    [No Abstract]   [Full Text] [Related]  

  • 9. Leg muscle blood-flow measured with 133-xenon after ischaemia periods and after muscular exercise performed during ischaemia.
    Lindbjerg IF
    Clin Sci; 1966 Jun; 30(3):399-408. PubMed ID: 5914383
    [No Abstract]   [Full Text] [Related]  

  • 10. Muscle blood flow during exercise in intermittent claudication. Validation of the 133-xenon clearance technique: clinical use by comparison to plethysmography and walking distance.
    Tonnesen KH
    Circulation; 1968 Mar; 37(3):402-10. PubMed ID: 5644183
    [No Abstract]   [Full Text] [Related]  

  • 11. Influence of clonidine (Catapressan-ST155) on the muscle blood flow in the legs of hypertensive patients (Antagonism of tolazoline).
    Amery A; Bosseert H; Clement D; Deruyttere M; Verstraete M
    Angiologica; 1970; 7(5):296-311. PubMed ID: 5488674
    [No Abstract]   [Full Text] [Related]  

  • 12. Muscle blood flow in Duchenne type muscular dystrophy, limb-girdle dystrophy, polymyositis, and in normal controls.
    Paulson OB; Engel AG; Gomez MR
    J Neurol Neurosurg Psychiatry; 1974 Jun; 37(6):685-90. PubMed ID: 4210685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The blood flow in calf muscles in normal man and in patients with obliterative arterial disease studied during walking by the Xe-133 clearance method.
    García del Río H
    Scand J Clin Lab Invest Suppl; 1967; 99():130-2. PubMed ID: 6056907
    [No Abstract]   [Full Text] [Related]  

  • 14. Muscle blood flow during exercise in normal man studied by the 133Xenon clearance method.
    Clausen JP; Lassen NA
    Cardiovasc Res; 1971 Apr; 5(2):245-54. PubMed ID: 5579529
    [No Abstract]   [Full Text] [Related]  

  • 15. [Mechanism of the change in regimen of working hyperemia of the muscles of the human forearm on increasing the load].
    Baraz LA; Veselova EV; Meshcherskiĭ EL; Khaiutin VM
    Fiziol Zh SSSR Im I M Sechenova; 1973 Apr; 59(3):578-83. PubMed ID: 4746212
    [No Abstract]   [Full Text] [Related]  

  • 16. Radioactive xenon tissue clearance: standardization for measurement of peripheral blood flow.
    Corman LA; Flickinger FW; Sokoloff J; Nodine JH
    J Nucl Med; 1970 Jun; 11(6):233-8. PubMed ID: 4393045
    [No Abstract]   [Full Text] [Related]  

  • 17. Properties of exercise and reactive hyperemias in canine hindlimb muscles under constant pressure perfusion.
    Tominaga S; Watanabe K; Nakamura T
    Tohoku J Exp Med; 1973 Sep; 111(1):51-60. PubMed ID: 4776737
    [No Abstract]   [Full Text] [Related]  

  • 18. Abnormalities in the regional circulations accompanying congestive heart failure.
    Zelis R; Nellis SH; Longhurst J; Lee G; Mason DT
    Prog Cardiovasc Dis; 1975; 18(3):181-99. PubMed ID: 1103232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of prostaglandins to muscle blood flow in anesthetized dogs at rest, during exercise, and following inflow occlusion.
    Beaty O; Donald DE
    Circ Res; 1979 Jan; 44(1):67-75. PubMed ID: 363302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood flow in the calf muscle of man during heavy rhythmic exercise.
    Folkow B; Haglund U; Jodal M; Lundgren O
    Acta Physiol Scand; 1971 Feb; 81(2):157-63. PubMed ID: 5552789
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.