These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 4461550)

  • 1. Proceedings: Formation of oxygen radicals and hydrogen peroxide in mitochondrial membranes.
    Loschen G; Azzi A
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1226. PubMed ID: 4461550
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitochondrial hydrogen peroxide production alters oxygen consumption in an oxygen-concentration-dependent manner.
    Munns SE; Lui JK; Arthur PG
    Free Radic Biol Med; 2005 Jun; 38(12):1594-603. PubMed ID: 15917188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detoxifying function of cytochrome c against oxygen toxicity.
    Min L; Jian-xing X
    Mitochondrion; 2007; 7(1-2):13-6. PubMed ID: 17276741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Chemoluminescence linked to the formation of lipid peroxides in biological membranes. IX. Luminescence in the presence of luminol].
    Vladimirov IuA; Cheremisina ZP; Suslova TB
    Biofizika; 1972; 17(4):702-5. PubMed ID: 4643374
    [No Abstract]   [Full Text] [Related]  

  • 5. Status of glutathione in the rat liver. Enhanced formation of oxygen radicals at low oxygen tension.
    Siems W; Mielke B; Müller M; Heumann C; Räder L; Gerber G
    Biomed Biochim Acta; 1983; 42(9):1079-89. PubMed ID: 6670997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycerophosphate-dependent peroxide production by brown fat mitochondria from newborn rats.
    Drahota Z; Rauchova H; Jesina P; Vojtísková A; Houstek J
    Gen Physiol Biophys; 2003 Mar; 22(1):93-102. PubMed ID: 12870704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the free radical theory of aging in bats.
    Brunet Rossinni AK
    Ann N Y Acad Sci; 2004 Jun; 1019():506-8. PubMed ID: 15247075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress.
    Fernandes MA; Custódio JB; Santos MS; Moreno AJ; Vicente JA
    Mitochondrion; 2006 Aug; 6(4):176-85. PubMed ID: 16890028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biology of disease: free radicals and tissue injury.
    Freeman BA; Crapo JD
    Lab Invest; 1982 Nov; 47(5):412-26. PubMed ID: 6290784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific variation in survival and mitochondrial oxidative phosphorylation in wild-caught Drosophila simulans.
    Melvin RG; Ballard JW
    Aging Cell; 2006 Jun; 5(3):225-33. PubMed ID: 16842495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of oxygen consumption promotes mitochondrial calcium accumulation, a process associated with, and causally linked to, enhanced formation of tert-butylhydroperoxide-induced DNA single-strand breaks.
    Guidarelli A; Brambilla L; Clementi E; Sciorati C; Cantoni O
    Exp Cell Res; 1997 Nov; 237(1):176-85. PubMed ID: 9417880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sepsis induces brain mitochondrial dysfunction.
    d'Avila JC; Santiago AP; Amâncio RT; Galina A; Oliveira MF; Bozza FA
    Crit Care Med; 2008 Jun; 36(6):1925-32. PubMed ID: 18496362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system.
    Reiter RJ; Acuña-Castroviejo D; Tan DX; Burkhardt S
    Ann N Y Acad Sci; 2001 Jun; 939():200-15. PubMed ID: 11462772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of catalase on the conjugated oxidative phosphorylation process and adenylate system in albino rat liver].
    Manoĭlov SE; Vovsi BA; Polosova RG; Sidorova ND
    Biokhimiia; 1966; 31(3):613-8. PubMed ID: 5999950
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxygen radicals and hydrogen peroxide in rat brain mitochondria.
    Sorgato MC; Sartorelli L; Loschen G; Azzi A
    FEBS Lett; 1974 Sep; 45(1):92-5. PubMed ID: 4414969
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes.
    García-Ruiz C; Colell A; Morales A; Kaplowitz N; Fernández-Checa JC
    Mol Pharmacol; 1995 Nov; 48(5):825-34. PubMed ID: 7476912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity.
    Mori N; Yasutake A; Hirayama K
    Arch Toxicol; 2007 Nov; 81(11):769-76. PubMed ID: 17464500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apoptotic-resistance of the human osteosarcoma cell line HS-Os-1 to irradiation is converted to apoptotic-susceptibility by hydrogen peroxide: a potent role of hydrogen peroxide as a new radiosensitizer.
    Ogawa Y; Takahashi T; Kobayashi T; Kariya S; Nishioka A; Ohnishi T; Saibara T; Hamasato S; Tani T; Seguchi H; Yoshida S; Sonobe H
    Int J Mol Med; 2003 Dec; 12(6):845-50. PubMed ID: 14612955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.