BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 4461597)

  • 1. Proceedings: Mechanism of microsomal chain elongation of fatty acids.
    Seubert W; Podack ER; Saathoff G
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1255-6. PubMed ID: 4461597
    [No Abstract]   [Full Text] [Related]  

  • 2. [2,3-trans-Hexenoyl-CoA-reductase and 2,3-trans-decenoyl-CoA-reductase as components of microsomal, malonyl-CoA-dependent or mitochondrial acetyl CoA dependent chain prolongation of fatty acids].
    Podack ER; Seubert W
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1557. PubMed ID: 4649820
    [No Abstract]   [Full Text] [Related]  

  • 3. [Mechanism regulating the fatty acid distribution pattern in the membrane phospholipids].
    Okuyama H
    Tanpakushitsu Kakusan Koso; 1973 Feb; 18(2):114-32. PubMed ID: 4569728
    [No Abstract]   [Full Text] [Related]  

  • 4. Stimulatory effect of clofibrate and gemfibrozil administration on the formation of fatty acid esters of estradiol by rat liver microsomes.
    Xu S; Zhu BT; Conney AH
    J Pharmacol Exp Ther; 2001 Jan; 296(1):188-97. PubMed ID: 11123380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism and control of the malonyl-CoA-dependent chain elongation of fatty acids. The malonyl-transfer reaction.
    Podack ER; Saathoff G; Seubert
    Eur J Biochem; 1974 Dec; 50(1):237-43. PubMed ID: 4452359
    [No Abstract]   [Full Text] [Related]  

  • 6. An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids by rat liver microsomes.
    Bernert JT; Sprecher H
    J Biol Chem; 1977 Oct; 252(19):6736-44. PubMed ID: 893439
    [No Abstract]   [Full Text] [Related]  

  • 7. [Involvement of electron transfer system on microsomal fatty acid chain elongation].
    Nagao M
    Hokkaido Igaku Zasshi; 1983 Jul; 58(4):390-9. PubMed ID: 6414922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of methylmalonyl CoA on the enzymes of fatty acid biosynthesis.
    Forward SD; Gompertz D
    Enzymologia; 1970 Dec; 39(6):379-90. PubMed ID: 5493209
    [No Abstract]   [Full Text] [Related]  

  • 9. On the mechanism and control of the malonyl-CoA-dependent chain elongation of fatty acids. Characterization of hexenoyl-CoA reductase from liver and adrenal cortex as a constituent of the microsomal chain elongation.
    Podack ER; Lakomek M; Saathoff G; Seubert W
    Eur J Biochem; 1974 Jun; 45(1):13-23. PubMed ID: 4420745
    [No Abstract]   [Full Text] [Related]  

  • 10. Activity of fatty acyl CoA-lysophospholipid acyltransferases in liver microsomes of rats fed a choline-deficient diet.
    Chen SH; Lombardi B
    Lipids; 1973 Apr; 8(4):163-5. PubMed ID: 4695126
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanism of inhibition of fatty acid oxidation by pent-4-enoic acid: 3-oxoacyl-coenzyme A thiolase as the possible site of inhibition.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1972 Apr; 127(3):79P-80P. PubMed ID: 5076224
    [No Abstract]   [Full Text] [Related]  

  • 12. Selective transfer of cyclopropane acids by acyl coenzyme A: phospholipid acyltransferases.
    Okuyama H; Lands WE; Christie WW; Gunstone FD
    J Biol Chem; 1969 Dec; 244(23):6514-9. PubMed ID: 5354965
    [No Abstract]   [Full Text] [Related]  

  • 13. [Biosynthesis of cholesterol and fatty acids from 1-C14-acetyl CoA and 2-C14-malonyl-CoA].
    Klimov AN; Dokusova OK; Petrova LA; Poliakova ED
    Biokhimiia; 1971; 36(3):451-5. PubMed ID: 5132478
    [No Abstract]   [Full Text] [Related]  

  • 14. ACYL-CARRIER PROTEIN. II. INTERMEDIARY REACTIONS OF FATTY ACID SYNTHESIS.
    ALBERTS AW; MAJERUS PW; TALAMO B; VAGELOS PR
    Biochemistry; 1964 Oct; 3():1563-71. PubMed ID: 14232033
    [No Abstract]   [Full Text] [Related]  

  • 15. Changes in fatty acid pattern of liver microsomal phospholipids in rats treated with carbon tetrachloride.
    Comporti M; Burdino E; Ugazio G
    Ital J Biochem; 1971; 20(5):156-65. PubMed ID: 5148896
    [No Abstract]   [Full Text] [Related]  

  • 16. Fatty acids in hepatic microsomal and mitochondrial phospholipids.
    Leyck S; Freundt KJ
    Arzneimittelforschung; 1980; 30(10):1688-90. PubMed ID: 7192107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspects of omega- and (omega-1)-oxidation of fatty acids by microsomal preparations from sheep liver [proceedings].
    Wahle KW; Hare WR; Paterson SM
    Biochem Soc Trans; 1978; 6(6):1158-9. PubMed ID: 744377
    [No Abstract]   [Full Text] [Related]  

  • 18. FAT METABOLISM IN HIGHER PLANTS. XXI. BIOSYNTHESIS OF FATTY ACIDS BY AVOCADO MESOCARP ENZYME SYSTEMS.
    YANG SF; STUMPF PK
    Biochim Biophys Acta; 1965 Feb; 98():19-26. PubMed ID: 14292867
    [No Abstract]   [Full Text] [Related]  

  • 19. Microsomal conjugation of fatty acids to codeine.
    Leighty EG; Fentiman AF
    J Pharm Pharmacol; 1983 Apr; 35(4):260-1. PubMed ID: 6133941
    [No Abstract]   [Full Text] [Related]  

  • 20. Changes in hepatic microsomal fatty acid synthesis during development of the rat.
    Warshaw JB; Kimura RE
    Biol Neonate; 1973; 22(1):133-40. PubMed ID: 4717003
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.