These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 4462560)

  • 41. Metabolism of 4-chlorophenol by Azotobacter sp. GP1: structure of the meta cleavage product of 4-chlorocatechol.
    Wieser M; Eberspächer J; Vogler B; Lingens F
    FEMS Microbiol Lett; 1994 Feb; 116(1):73-8. PubMed ID: 8132157
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A simple and efficient synthesis of optically pure tricarbonyl(methyl 6-oxo-2,4-hexadienoate)iron.
    Godula K; Bärmann H; Donaldson WA
    J Org Chem; 2001 May; 66(10):3590-2. PubMed ID: 11348149
    [No Abstract]   [Full Text] [Related]  

  • 43. Role of cis-cis muconic acid in the catalysis of Pseudomonas putida chlorocatechol 1,2-dioxygenase.
    Melo FA; Araújo AP; Costa-Filho AJ
    Int J Biol Macromol; 2010 Aug; 47(2):233-7. PubMed ID: 20452370
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation of chlorobiphenyls catalyzed by the bph-encoded biphenyl-2,3-dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase of Pseudomonas sp. LB400.
    Seeger M; Timmis KN; Hofer B
    FEMS Microbiol Lett; 1995 Nov; 133(3):259-64. PubMed ID: 8522140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Transformation of biphenyl intermediate metabolite by manganese peroxidase from a white rot fungus SQ01].
    Yang X; Zhang X
    Wei Sheng Wu Xue Bao; 2016 Jun; 56(6):1044-55. PubMed ID: 29727560
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biphenyl-associated meta-cleavage dioxygenases from Comamonas testosteroni B-356.
    Hein P; Powlowski J; Barriault D; Hurtubise Y; Ahmad D; Sylvestre M
    Can J Microbiol; 1998 Jan; 44(1):42-9. PubMed ID: 9522448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolism of biphenyl by Aspergillus toxicarius: induction of hydroxylating activity and accumulation of water-soluble conjugates.
    Golbeck JH; Albaugh SA; Radmer R
    J Bacteriol; 1983 Oct; 156(1):49-57. PubMed ID: 6619100
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cometabolic ring fission of dibenzofuran by Gram-negative and Gram-positive biphenyl-utilizing bacteria.
    Stope MB; Becher D; Hammer E; Schauer F
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):62-7. PubMed ID: 12073133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic oxidative cleavage of catechol by a non-heme iron(III) complex as a green route to dimethyl adipate.
    Jastrzebski R; Weckhuysen BM; Bruijnincx PC
    Chem Commun (Camb); 2013 Aug; 49(61):6912-4. PubMed ID: 23800824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Degradation of biphenyl by Mycobacterium sp. strain PYR-1.
    Moody JD; Doerge DR; Freeman JP; Cerniglia CE
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):364-9. PubMed ID: 11935189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biphenyl uptake by psychrotolerant Pseudomonas sp. strain Cam-1 and mesophilic Burkholderia sp. strain LB400.
    Master ER; McKinlay JJ; Stewart GR; Mohn WW
    Can J Microbiol; 2005 May; 51(5):399-404. PubMed ID: 16088335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Comparative studies in vivo and in vitro on the formation of phenolic biphenyl metabolites in various animal species (author's transl)[].
    Raig P; Beschorner J; Ammon R
    Arzneimittelforschung; 1976; 26(12):2178-82. PubMed ID: 1037268
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deoxycholic acid degradation by a Pseudomonas sp. Acidic intermediates with A-ring unsaturation.
    Leppik RA
    Biochem J; 1983 Mar; 210(3):829-36. PubMed ID: 6870808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deoxycholic acid degradation by a Pseudomonas species. Acidic intermediates from the initial part of the catabolic pathway.
    Leppik RA
    Biochem J; 1982 Mar; 202(3):747-51. PubMed ID: 7092842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. alpha-Pinene metabolism by Pseudomonas putida.
    Tudroszen NJ; Kelly DP; Millis NF
    Biochem J; 1977 Nov; 168(2):315-8. PubMed ID: 597274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The fluorescence of some biphenyl derivatives.
    Bridges JW; Creaven PJ; Williams RT
    Biochem J; 1965 Sep; 96(3):872-8. PubMed ID: 5862424
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of 2-oxo-cis-4-hexenoic acid as a cleavage product in the microbiological degradation of steroids.
    Coulter AW; Talalay P
    Biochem Biophys Res Commun; 1967 Nov; 29(3):413-7. PubMed ID: 6076243
    [No Abstract]   [Full Text] [Related]  

  • 58. Microbial degradation of aromatic hydrocarbons used as reactor coolants.
    Catelani D; Mosselmans G; Nienhaus J; Sorlini C; Treccani V
    Experientia; 1970 Aug; 26(8):922-3. PubMed ID: 5452042
    [No Abstract]   [Full Text] [Related]  

  • 59. Lipoate metabolism in Pseudomonas putida LP.
    Chang HH; Rozo ML; McCormick DB
    Arch Biochem Biophys; 1975 Jul; 169(1):244-51. PubMed ID: 1099990
    [No Abstract]   [Full Text] [Related]  

  • 60. [Chemical studies on hydrogenation of 2-phenylphenol and its hydrogenated products. II. High pressure hydrogenation of 2-phenylpenol in liquid phase].
    YOSHITAKE H
    Yakugaku Zasshi; 1963 May; 83():532-41. PubMed ID: 14002737
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.