BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4463364)

  • 21. Effects of heavy metals on methane production in tropical rice soils.
    Mishra SR; Bharati K; Sethunathan N; Adhya TK
    Ecotoxicol Environ Saf; 1999 Sep; 44(1):129-36. PubMed ID: 10499999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].
    Pimenov NV; Ul'ianova MO; Kanapatski TA; Sivkov VV; Ivanov MV
    Mikrobiologiia; 2008; 77(5):651-9. PubMed ID: 19004347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Methane microbiological oxidation process in the freswater lakes of the Mari ASSR].
    Laurinavichus KS; Beliaev SS; Ivanov MV
    Izv Akad Nauk SSSR Biol; 1978; (2):308-12. PubMed ID: 147890
    [No Abstract]   [Full Text] [Related]  

  • 24. [Geomicrobiology of lignite. I. Microbe associations of a lignite layer].
    Jaschhof H; Schwartz W
    Z Allg Mikrobiol; 1969; 9(2):103-19. PubMed ID: 5380485
    [No Abstract]   [Full Text] [Related]  

  • 25. Thermophilic methane production and oxidation in compost.
    Jäckel U; Thummes K; Kämpfer P
    FEMS Microbiol Ecol; 2005 Apr; 52(2):175-84. PubMed ID: 16329904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Use of silica gel in the preparation of pure cultures of obligate methane oxidizing microorganisms].
    Galchenko VP
    Prikl Biokhim Mikrobiol; 1975; 11(3):447-50. PubMed ID: 174068
    [No Abstract]   [Full Text] [Related]  

  • 27. Methane asphyxia. Coal mine accident investigation of distribution of gas.
    Terazawa K; Takatori T; Tomii S; Nakano K
    Am J Forensic Med Pathol; 1985 Sep; 6(3):211-4. PubMed ID: 3870672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Isolation of pure cultures of obligate methane-oxidizing bacteria].
    Malashenko IuR; Kvasnikov EI; Romanovskaia VA; Bogachenko VN
    Mikrobiologiia; 1971; 40(4):724-9. PubMed ID: 5096618
    [No Abstract]   [Full Text] [Related]  

  • 29. [Transformation of high-paraffinaceous oil by microorganisms under anaerobic and aerobic conditions].
    Simakova TL; Kolesnik ZA; Strigaleva NV; Norenkova IK; Shmonova NI
    Mikrobiologiia; 1968; 37(2):233-8. PubMed ID: 5732066
    [No Abstract]   [Full Text] [Related]  

  • 30. [Intensities of microbial production and oxidation of methane in bottom sediments and water mass of the Black Sea].
    Gal'chenko VF; Lein AIu; Ivanov MV
    Mikrobiologiia; 2004; 73(2):271-83. PubMed ID: 15198040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Methylotrophic bacteria in the sphere of drinking water. 1. Communication: comparison of the bacterial count of the water derived from different treatment plants].
    Tuschewitzki GJ; Dott W; Thofern E
    Zentralbl Bakteriol Mikrobiol Hyg B; 1982 May; 176(2-3):176-88. PubMed ID: 6750990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Vital activity of methane-oxidizing bacteria after their filtration through coal pore structures].
    Abramov FA; Malashenko IuR; Miaken'kiĭ VI; Kurdish IK; Shevelev GA
    Mikrobiol Zh; 1977; 39(3):290-3. PubMed ID: 895569
    [No Abstract]   [Full Text] [Related]  

  • 33. [Sorbtion of several microorganisms by coal in mine water].
    Zelepukha SI; Zemlerub IL; Iaroshevskaia NV
    Mikrobiol Zh (1978); 1979; 41(3):279-81. PubMed ID: 384180
    [No Abstract]   [Full Text] [Related]  

  • 34. Characterization of microorganisms isolated from lignite excavated from the Záhorie coal mine (southwestern Slovakia).
    Pokorný R; Olejníková P; Balog M; Zifcák P; Hölker U; Janssen M; Bend J; Höfer M; Holiencin R; Hudecová D; Varecka L
    Res Microbiol; 2005 Nov; 156(9):932-43. PubMed ID: 16085397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen as a regulatory factor of methane oxidation in soils and sediments.
    Bodelier PL; Laanbroek HJ
    FEMS Microbiol Ecol; 2004 Mar; 47(3):265-77. PubMed ID: 19712315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Ecologic conditions for the spread of methane-forming bacteria in the petroleum strata of Apsheron].
    Nazina TN; Rozanova EP
    Mikrobiologiia; 1980; 49(1):123-9. PubMed ID: 6446657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Preliminary studies of psychrophilic lipolytic bacteria in soil and water].
    Breuil C; Gounot AM
    Can J Microbiol; 1972 Sep; 18(9):1445-51. PubMed ID: 4561032
    [No Abstract]   [Full Text] [Related]  

  • 39. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils.
    Angel R; Conrad R
    Environ Microbiol; 2009 Oct; 11(10):2598-610. PubMed ID: 19601957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Quantitative determination of sulfate-reducing bacteria in soil and underground water].
    Oberzill W
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(1):91-6. PubMed ID: 4916636
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.