These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 44681)

  • 21. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution.
    Sielecki AR; Fedorov AA; Boodhoo A; Andreeva NS; James MN
    J Mol Biol; 1990 Jul; 214(1):143-70. PubMed ID: 2115087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins.
    Cravello L; Lascoux D; Forest E
    Rapid Commun Mass Spectrom; 2003; 17(21):2387-93. PubMed ID: 14587084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural dissection of alkaline-denatured pepsin.
    Kamatari YO; Dobson CM; Konno T
    Protein Sci; 2003 Apr; 12(4):717-24. PubMed ID: 12649430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino acid sequences around 1, 2-epoxy-3-(p-nitrophenoxy)propane-reactive residues in rhizopus chinensis acid protease: homology with pepsin and rennin.
    Nakamura S; Takahashi K
    J Biochem; 1977 Mar; 81(3):805-7. PubMed ID: 16879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The many faces of protease-protein inhibitor interaction.
    Otlewski J; Jelen F; Zakrzewska M; Oleksy A
    EMBO J; 2005 Apr; 24(7):1303-10. PubMed ID: 15775973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A structural model for the retroviral proteases.
    Pearl LH; Taylor WR
    Nature; 1987 Sep 24-30; 329(6137):351-4. PubMed ID: 3306411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convergent dynamics in the protease enzymatic superfamily.
    Carnevale V; Raugei S; Micheletti C; Carloni P
    J Am Chem Soc; 2006 Aug; 128(30):9766-72. PubMed ID: 16866533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 A resolution and structural basis of its dual role.
    Khan JA; Kumar P; Paramasivam M; Yadav RS; Sahani MS; Sharma S; Srinivasan A; Singh TP
    J Mol Biol; 2001 Jun; 309(3):751-61. PubMed ID: 11397094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local dynamics measured by hydrogen/deuterium exchange and mass spectrometry of creatine kinase digested by two proteases.
    Mazon H; Marcillat O; Forest E; Vial C
    Biochimie; 2005 Dec; 87(12):1101-10. PubMed ID: 16023284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study of the soluble complexes formed during calcium binding by soybean protein hydrolysates.
    Bao XL; Lv Y; Yang BC; Ren CG; Guo ST
    J Food Sci; 2008 Apr; 73(3):C117-21. PubMed ID: 18387086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Limited proteolysis of bovine alpha-lactalbumin: isolation and characterization of protein domains.
    Polverino de Laureto P; Scaramella E; Frigo M; Wondrich FG; De Filippis V; Zambonin M; Fontana A
    Protein Sci; 1999 Nov; 8(11):2290-303. PubMed ID: 10595532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution in the structure and function of aspartic proteases.
    Tang J; Wong RN
    J Cell Biochem; 1987 Jan; 33(1):53-63. PubMed ID: 3546346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains.
    Rotanova TV; Melnikov EE; Khalatova AG; Makhovskaya OV; Botos I; Wlodawer A; Gustchina A
    Eur J Biochem; 2004 Dec; 271(23-24):4865-71. PubMed ID: 15606774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Digestive enzymes in insectivorous plants. 3. Acid proteases in the genus Nepenthes and Drosera peltata.
    Amagase S
    J Biochem; 1972 Jul; 72(1):73-81. PubMed ID: 5069751
    [No Abstract]   [Full Text] [Related]  

  • 35. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme.
    Park HJ; Lee CW; Kim D; Do H; Han SJ; Kim JE; Koo BH; Lee JH; Yim JH
    PLoS One; 2018; 13(2):e0191740. PubMed ID: 29466378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The structure of pepsin. I. Molecular self-symmetry of the enzyme and implications for the evolution of aspartate proteinases].
    Andreeva NS
    Mol Biol (Mosk); 1985; 19(1):218-24. PubMed ID: 3920505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [X-ray structural analysis of pepsin. V. Conformation of the main chain of the enzyme].
    Andreeva NS; Fedorov AA; Gushchina AE; Riskulov RR; Shutskever NE; Safro MG
    Mol Biol (Mosk); 1978; 12(4):922-36. PubMed ID: 355868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Pepsin and pepsinogen. Origin, properties, preparation].
    Cheret AM; Bonfils S
    Pathol Biol (Paris); 1970 Mar; 18(5):317-42. PubMed ID: 4911318
    [No Abstract]   [Full Text] [Related]  

  • 39. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo.
    McPhalen CA; James MN
    Biochemistry; 1988 Aug; 27(17):6582-98. PubMed ID: 3064813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Domain flexibility in aspartic proteinases.
    Sali A; Veerapandian B; Cooper JB; Moss DS; Hofmann T; Blundell TL
    Proteins; 1992 Feb; 12(2):158-70. PubMed ID: 1603805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.