These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 4468821)

  • 1. Studies on the role of calcium ions in the stimulation by adrenaline of amylase release from rat parotid.
    Dormer RL; Ashcroft SJ
    Biochem J; 1974 Dec; 144(3):543-50. PubMed ID: 4468821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of mitochondria in the regulation of calcium influx into Jurkat cells.
    Makowska A; Zablocki K; Duszyński J
    Eur J Biochem; 2000 Feb; 267(3):877-84. PubMed ID: 10651826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium metabolism and amylase release in rat parotid acinar cells.
    Kanagasuntheram P; Randle PJ
    Biochem J; 1976 Dec; 160(3):547-64. PubMed ID: 189753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells.
    Barritt GJ; Parker JC; Wadsworth JC
    J Physiol; 1981 Mar; 312():29-55. PubMed ID: 7264996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium metabolism and enzyme secretion in guinea pig pancreas. Uptake, storage and release of calcium in whole cells and mitochondrial and microsomal fractions.
    Lucas M; Schmid G; Kromas R; Löffler G
    Eur J Biochem; 1978 Apr; 85(2):609-19. PubMed ID: 648536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that ATP-dependent Ca2+ transport in rat parotid microsomal membranes requires charge compensation.
    Baum BJ; Ambudkar IS; Horn VJ
    Biochem J; 1988 Sep; 254(3):649-54. PubMed ID: 2848492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parotid microsomal Ca2+ transport. Subcellular localization and characterization.
    Kanagasuntheram P; Teo TS
    Biochem J; 1982 Dec; 208(3):789-94. PubMed ID: 6925974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic AMP has distinct effects from Ca(2+) in evoking priming and fusion/exocytosis in parotid amylase secretion.
    Yoshimura K; Fujita-Yoshigaki J; Murakami M; Segawa A
    Pflugers Arch; 2002 Aug; 444(5):586-96. PubMed ID: 12194011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine triphosphate dependent calcium uptake by subcellular fractions from bovine neurohypophyses.
    Russell JT; Thorn NA
    Acta Physiol Scand; 1975 Mar; 93(3):364-77. PubMed ID: 238361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland.
    Thévenod F; Schulz I
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G429-40. PubMed ID: 3263053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in cytosolic calcium during cholinergic and adrenergic stimulation of the parotid salivary gland.
    O'Doherty J; Stark RJ; Crane SJ; Brugge KL
    Pflugers Arch; 1983 Aug; 398(3):241-6. PubMed ID: 6195592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-dependent calcium uptake by microsomal preparations from rat parotid and submaxillary glands.
    Selinger Z; Naim E; Lasser M
    Biochim Biophys Acta; 1970 Apr; 203(2):326-34. PubMed ID: 4245535
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition.
    Nieminen AL; Saylor AK; Herman B; Lemasters JJ
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C67-74. PubMed ID: 8048493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effects of loading with the calcium-chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) on amylase release and cellular ATP level in rat parotid cells.
    Tojyo Y; Matsumoto Y
    Biochem Pharmacol; 1990 Jun; 39(11):1775-9. PubMed ID: 1693078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The modulation of action potential generation by calcium-induced calcium release is enhanced by mitochondrial inhibitors in mudpuppy parasympathetic neurons.
    Barstow KL; Locknar SA; Merriam LA; Parsons RL
    Neuroscience; 2004; 124(2):327-39. PubMed ID: 14980383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial inhibitors activate influx of external Ca(2+) in sea urchin sperm.
    Ardón F; Rodríguez-Miranda E; Beltrán C; Hernández-Cruz A; Darszon A
    Biochim Biophys Acta; 2009 Jan; 1787(1):15-24. PubMed ID: 19000650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of calcium and cyclic AMP in amylase release from isolated rat parotid acinar cells: effect of calcium ionophore A23187.
    Takemura H
    Res Commun Chem Pathol Pharmacol; 1984 Aug; 45(2):179-90. PubMed ID: 6207571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that angiotensin II decreases mitochondrial calcium in the glomerulosa cell.
    Kramer RE
    Mol Cell Endocrinol; 1990 Dec; 74(2):87-100. PubMed ID: 1708733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of amylase biosynthesis and release in the parotid gland of the rat.
    McPherson MA; Hales CN
    Biochem J; 1978 Dec; 176(3):855-63. PubMed ID: 218555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial calcium uptake stimulated by Cibacron blue F3GA in bovine sperm.
    Schoff PK
    Arch Biochem Biophys; 1995 Apr; 318(2):349-55. PubMed ID: 7537487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.