These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 44693)

  • 1. Dopamine autoreceptors: pharmacology, function and comparison with post-synaptic dopamine receptors.
    Roth RH
    Commun Psychopharmacol; 1979; 3(6):429-45. PubMed ID: 44693
    [No Abstract]   [Full Text] [Related]  

  • 2. Presynaptic dopamine receptors in striatal nerve endings: absence of haloperidol-induced supersensitivity.
    Raiteri M; Cerrito F; Casazza G; Levi G
    Adv Biochem Psychopharmacol; 1980; 24():37-43. PubMed ID: 7405669
    [No Abstract]   [Full Text] [Related]  

  • 3. Pre- and postsynaptic mechanisms in haloperidol-induced sensitization to dopaminergic agonists.
    Muller P; Svensson TH; Carlsson A
    Adv Biochem Psychopharmacol; 1980; 24():69-74. PubMed ID: 6105807
    [No Abstract]   [Full Text] [Related]  

  • 4. Pharmacology of antipsychotic drugs.
    Borison RL
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):25-8. PubMed ID: 2858475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in dopamine receptors: effect of lesion and haloperidol treatment.
    Goldstein M; Lew JY; Asano T; Ueta K
    Commun Psychopharmacol; 1980; 4(1):21-5. PubMed ID: 6105037
    [No Abstract]   [Full Text] [Related]  

  • 6. The brain's dopamine receptor: labeling with (3H) dopamine and (3H) haloperidol.
    Snyder SH; Creese I; Burt DR
    Psychopharmacol Commun; 1975; 1(6):663-73. PubMed ID: 1241457
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of repeated treatment with neuroleptics on dopamine metabolism in cell bodies and terminals of dopaminergic systems in the rat brain.
    Scatton B
    Adv Biochem Psychopharmacol; 1980; 24():31-6. PubMed ID: 6105783
    [No Abstract]   [Full Text] [Related]  

  • 8. Long-term haloperidol treatment (but not risperidone) enhances addiction-related behaviors in mice: role of dopamine D2 receptors.
    Carvalho RC; Fukushiro DF; Helfer DC; Callegaro-Filho D; Trombin TF; Zanlorenci LH; Sanday L; Silva RH; Frussa-Filho R
    Addict Biol; 2009 Jul; 14(3):283-93. PubMed ID: 19298320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing sertindole to other new generation antipsychotics on preferential dopamine output in limbic versus striatal projection regions: mechanism of action.
    Hertel P
    Synapse; 2006 Dec; 60(7):543-52. PubMed ID: 16952163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that systemically administered dopamine antagonists activate dopamine neuron firing primarily by blockade of somatodendritic autoreceptors.
    Pucak ML; Grace AA
    J Pharmacol Exp Ther; 1994 Dec; 271(3):1181-92. PubMed ID: 7996424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic lithium administration has no effect on haloperidol-induced supersensitivity of pre- and postsynaptic dopamine receptors in rat brain.
    Reches A; Wagner HR; Jackson V; Fahn S
    Brain Res; 1982 Aug; 246(1):172-7. PubMed ID: 6289974
    [No Abstract]   [Full Text] [Related]  

  • 12. [Current theories on the role of dopamine in the mechanism of action of neuroleptic drugs].
    Płaźnik A; Kostowski W
    Psychiatr Pol; 1984; 18(1):39-47. PubMed ID: 6146150
    [No Abstract]   [Full Text] [Related]  

  • 13. U-66444B and U-68553B, potent autoreceptor agonists at dopaminergic cell bodies and terminals.
    Piercey MF; Broderick PA; Hoffmann WE; Vogelsang GD
    J Pharmacol Exp Ther; 1990 Aug; 254(2):369-74. PubMed ID: 1974631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic and non-synaptic striatal dopamine D2 receptors: possible implications in normal and pathological behaviour.
    Korf J; Loopuijt LD
    Acta Morphol Neerl Scand; 1988-1989; 26(2-3):177-90. PubMed ID: 2908162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biochemical mechanism of action of neuroleptics (author's transl)].
    Scatton B
    Encephale; 1981; 7(3):201-14. PubMed ID: 6116590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S 16924 ((R)-2-[1-[2-(2,3-dihydro-benzo[1,4] dioxin-5-Yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: I. Receptorial and neurochemical profile in comparison with clozapine and haloperidol.
    Millan MJ; Gobert A; Newman-Tancredi A; Audinot V; Lejeune F; Rivet JM; Cussac D; Nicolas JP; Muller O; Lavielle G
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1341-55. PubMed ID: 9732398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug effects on pre- and postsynaptic dopamine receptors.
    Andén NE; Grabowska-Andén M
    Adv Biochem Psychopharmacol; 1980; 24():57-64. PubMed ID: 6105802
    [No Abstract]   [Full Text] [Related]  

  • 18. Differential effects of haloperidol on phencyclidine-induced reduction in substance P contents in rat brain regions.
    Shirayama Y; Mitsushio H; Takahashi K; Nishikawa T
    Synapse; 2000 Mar; 35(4):292-9. PubMed ID: 10657039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tachykinin gene expression in rat limbic nuclei: modulation by dopamine antagonists.
    Shibata K; Haverstick DM; Bannon MJ
    J Pharmacol Exp Ther; 1990 Oct; 255(1):388-92. PubMed ID: 1976801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity.
    Schoemaker H; Claustre Y; Fage D; Rouquier L; Chergui K; Curet O; Oblin A; Gonon F; Carter C; Benavides J; Scatton B
    J Pharmacol Exp Ther; 1997 Jan; 280(1):83-97. PubMed ID: 8996185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.