These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 4473176)

  • 21. Relationships between sodium, water and glucose transport in renal proximal tubule of the rat [proceedings].
    Thomas S
    J Physiol; 1978 Dec; 285():11P. PubMed ID: 745058
    [No Abstract]   [Full Text] [Related]  

  • 22. What are the driving forces for the proximal tubular H+ and Ca++ transport? The electrochemical gradient for Na+ and/or ATP.
    Ullrich KJ; Frömter E; Gmaj P; Kinne R; Murer H
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():170-7. PubMed ID: 28898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of p-chloromercuribenzoate (pCMB), ouabain and 4-acetamido-4'iso-thiocyanatostilbene-2,2'-disulfonic acid (SITS) on proximal tubular transport processes.
    Ullrich KJ; Capasso G; Rumrich G; Sato K
    Adv Exp Med Biol; 1977; 84():3-13. PubMed ID: 899951
    [No Abstract]   [Full Text] [Related]  

  • 24. Proximal sodium and fluid transport.
    Windhager EE; Giebisch G
    Kidney Int; 1976 Feb; 9(2):121-33. PubMed ID: 940258
    [No Abstract]   [Full Text] [Related]  

  • 25. Proceedings: Sodium hydrogen linkage in rat renal proximal tubules.
    Giebisch G; Green R
    J Physiol; 1974 Oct; 242(2):109P-110P. PubMed ID: 4455782
    [No Abstract]   [Full Text] [Related]  

  • 26. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies.
    Turner RJ; Moran A
    Am J Physiol; 1982 Apr; 242(4):F406-14. PubMed ID: 6278960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.
    Green R; Giebisch G
    Am J Physiol; 1975 Nov; 229(5):1205-15. PubMed ID: 1200138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium and glucose transport across renal brush border membranes of Milan hypertensive rats.
    Parenti P; Hanozet GM; Bianchi G
    Hypertension; 1986 Oct; 8(10):932-9. PubMed ID: 3759227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose transport in a model of the rat proximal tubule epithelium.
    Weinstein AM
    Ann N Y Acad Sci; 1985; 456():136-8. PubMed ID: 3867306
    [No Abstract]   [Full Text] [Related]  

  • 30. Na(+)- and H(+)-gradient-dependent transport of alpha-aminoisobutyrate by luminal membrane vesicles from rabbit proximal tubule.
    Jessen H; Vorum H; Jørgensen KE; Sheikh MI
    J Physiol; 1991 May; 436():149-67. PubMed ID: 2061829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen transport in rabbit kidney proximal tubules--Na:H exchange.
    Bichara M; Paillard M; Leviel F; Gardin JP
    Am J Physiol; 1980 Jun; 238(6):F445-51. PubMed ID: 7386625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solute transport across isolated epithelia.
    Erlij D
    Kidney Int; 1976 Feb; 9(2):76-87. PubMed ID: 940265
    [No Abstract]   [Full Text] [Related]  

  • 33. Chloride transport in the mammalian proximal tubule.
    Schild L; Giebisch G; Karniski L; Aronson PS
    Pflugers Arch; 1986; 407 Suppl 2():S156-9. PubMed ID: 3822761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles.
    Kahn AM; Dolson GM; Hise MK; Bennett SC; Weinman EJ
    Am J Physiol; 1985 Feb; 248(2 Pt 2):F212-8. PubMed ID: 2982285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reabsorption of D-glucose from various regions of the rat proximal convoluted tubule: evidence that the proximal convolution is not homogeneous.
    Bode F; Chan YL; Goldner AM; Papavassilou F; Wagner M; Baumann K
    Curr Probl Clin Biochem; 1975; 4():39-43. PubMed ID: 1192774
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanisms of proximal tubular reabsorption: contribution of electrophysiologic techniques.
    Anagnostopoulos T; Edelman A; Teulon J; Planelles G
    Adv Nephrol Necker Hosp; 1983; 12():63-84. PubMed ID: 6301229
    [No Abstract]   [Full Text] [Related]  

  • 37. Evidence for OH-/H+ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO3(-)-free solutions.
    Burckhardt BC; Frömter E
    Pflugers Arch; 1987 Jun; 409(1-2):132-7. PubMed ID: 3039449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH--dependence of phosphate absorption in rat renal proximal tubule.
    Samarzija I; Molnar V; Frömter E
    Proc Eur Dial Transplant Assoc; 1983; 19():779-83. PubMed ID: 6878264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature dependence of transepithelial potential in isolated perfused rabbit proximal tubules.
    Biagi BA; Giebisch G
    Am J Physiol; 1979 Mar; 236(3):F302-10. PubMed ID: 426072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proceedings: Influence of chloride gradients on sodium reabsorption from the rat renal proximal tubule.
    Giebisch G; Green R
    J Physiol; 1974 Jun; 239(2):125P-126P. PubMed ID: 4415275
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.