These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 447338)

  • 1. Time limitations on visual information processing by a human operator.
    Meshcheryakov VA; Kazanovskaya IA
    Hum Physiol; 1979; 4(2):193-8. PubMed ID: 447338
    [No Abstract]   [Full Text] [Related]  

  • 2. [Characteristics of information processing by the right and left hemispheres of the brain].
    Dodonova NA; Zal'tsman AG; Meerson IaA
    Fiziol Cheloveka; 1984; 10(6):959-64. PubMed ID: 6526194
    [No Abstract]   [Full Text] [Related]  

  • 3. [Changes in different human physiologic indices during the processing of growing volumes of visual information].
    Gorbunov VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(4):765-72. PubMed ID: 7434950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 21st century human-system computing: augmented cognition for improved human performance.
    Schmorrow DD; Reeves LM
    Aviat Space Environ Med; 2007 May; 78(5 Suppl):B7-11. PubMed ID: 17547299
    [No Abstract]   [Full Text] [Related]  

  • 5. Queuing network modeling of the psychological refractory period (PRP).
    Wu C; Liu Y
    Psychol Rev; 2008 Oct; 115(4):913-54. PubMed ID: 18954209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unified model for perceptual learning.
    Seitz A; Watanabe T
    Trends Cogn Sci; 2005 Jul; 9(7):329-34. PubMed ID: 15955722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding sequential stages of task preparation in the human brain.
    Bode S; Haynes JD
    Neuroimage; 2009 Apr; 45(2):606-13. PubMed ID: 19111624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path information effects in visual and proprioceptive spatial learning.
    Yamamoto N; Shelton AL
    Acta Psychol (Amst); 2007 Jul; 125(3):346-60. PubMed ID: 17067542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A psychological refractory period in access to visual short-term memory and the deployment of visual-spatial attention: multitasking processing deficits revealed by event-related potentials.
    Brisson B; Jolicoeur P
    Psychophysiology; 2007 Mar; 44(2):323-33. PubMed ID: 17343714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Physiologic evaluation of possibilities of processing increasing volumes of visual information by human operators].
    Gorbunov VV; Makarenko NV; Dosychev VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(6):1028-33. PubMed ID: 6666325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual scanning behavior and pilot workload.
    Harris RL; Tole JR; Stephens AT; Ephrath AR
    Aviat Space Environ Med; 1982 Nov; 53(11):1067-72. PubMed ID: 7150165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The source of execution-related dual-task interference: motor bottleneck or response monitoring?
    Bratzke D; Rolke B; Ulrich R
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1413-26. PubMed ID: 19803646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory MEG responses predict successful and failed inhibition in a stop-signal task.
    Boehler CN; Münte TF; Krebs RM; Heinze HJ; Schoenfeld MA; Hopf JM
    Cereb Cortex; 2009 Jan; 19(1):134-45. PubMed ID: 18440947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of visual signals on spatial decision making.
    Danziger S; Rafal R
    Cognition; 2009 Feb; 110(2):182-97. PubMed ID: 19121825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separate and shared sources of dual-task cost in stimulus identification and response selection.
    Arnell KM; Duncan J
    Cogn Psychol; 2002 Mar; 44(2):105-47. PubMed ID: 11863322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contingent capture of visual-spatial attention depends on capacity-limited central mechanisms: evidence from human electrophysiology and the psychological refractory period.
    Brisson B; Leblanc E; Jolicoeur P
    Biol Psychol; 2009 Feb; 80(2):218-25. PubMed ID: 19000734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interstimulus contingency facilitates saccadic responses in a bimodal go/no-go task.
    Kirchner H; Colonius H
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):261-72. PubMed ID: 16040236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual cues influence motor coordination: behavioral results and potential neural mechanisms mediating perception-action coupling and response selection.
    Wenderoth N; Weigelt M
    Prog Brain Res; 2009; 174():179-88. PubMed ID: 19477339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional dissociation in right inferior frontal cortex during performance of go/no-go task.
    Chikazoe J; Jimura K; Asari T; Yamashita K; Morimoto H; Hirose S; Miyashita Y; Konishi S
    Cereb Cortex; 2009 Jan; 19(1):146-52. PubMed ID: 18445602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticipatory stress influences decision making under explicit risk conditions.
    Starcke K; Wolf OT; Markowitsch HJ; Brand M
    Behav Neurosci; 2008 Dec; 122(6):1352-60. PubMed ID: 19045954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.