These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 4474190)

  • 1. Letter: Carbon magnetic resonance study of the conformational changes in carp muscle calcium binding parvalbumin.
    Opella SJ; Nelson DJ; Jardetzyk O
    J Am Chem Soc; 1974 Oct; 96(22):7157-9. PubMed ID: 4474190
    [No Abstract]   [Full Text] [Related]  

  • 2. Calcium and magnesium binding by parvalbumin. A proton magnetic resonance spectral study.
    Birdsall WJ; Levine BA; Williams RJ; Demaille JG; Haiech J; Pechere JF
    Biochimie; 1979; 61(7):741-50. PubMed ID: 518923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformations of carp muscle calcium binding parvalbumin.
    Donato H; Martin RB
    Biochemistry; 1974 Oct; 13(22):4575-9. PubMed ID: 4425648
    [No Abstract]   [Full Text] [Related]  

  • 4. Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin.
    Lee L; Sykes BD
    Biochemistry; 1981 Mar; 20(5):1156-62. PubMed ID: 7225322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C nuclear magnetic resonance study of molecular motions and conformational transitions in muscle calcium binding parvalbumins.
    Nelson DJ; Opella SJ; Jardetzky O
    Biochemistry; 1976 Dec; 15(25):5552-60. PubMed ID: 999828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin.
    Lee L; Sykes BD
    Biophys J; 1980 Oct; 32(1):193-210. PubMed ID: 7248448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin.
    Lee L; Sykes BD
    Biochemistry; 1983 Sep; 22(19):4366-73. PubMed ID: 6626506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis.
    Moews PC; Kretsinger RH
    J Mol Biol; 1975 Jan; 91(2):201-25. PubMed ID: 1237625
    [No Abstract]   [Full Text] [Related]  

  • 9. The coordination of calcium ions by carp muscle calcium binding proteins A, B and C.
    Coffee CJ; Bradshaw RA; Kretsinger RH
    Adv Exp Med Biol; 1974; 48(0):211-33. PubMed ID: 4611157
    [No Abstract]   [Full Text] [Related]  

  • 10. An optical stopped-flow and 1H and 113Cd nuclear magnetic resonance study of the kinetics and stoichiometry of the interaction of the lanthanide Yb3+ with carp parvalbumin.
    Corson DC; Lee L; McQuaid GA; Sykes BD
    Can J Biochem Cell Biol; 1983 Aug; 61(8):860-7. PubMed ID: 6627097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural studies of calcium-binding proteins using nuclear magnetic resonance.
    Lee L; Corson DC; Sykes BD
    Biophys J; 1985 Feb; 47(2 Pt 1):139-42. PubMed ID: 3978195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and properties of carp muscle parvalbumin fragments A (residues 1 leads to 75) and B (residues 76 leads to 108).
    Coffee CJ; Solano C
    Biochim Biophys Acta; 1976 Nov; 453(1):67-80. PubMed ID: 999890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance determination of metal-protn distances in the EF site of carp parvalbumin using the susceptibility contribution to the line broadening of lanthanide-shifted resonances.
    Lee L; Sykes BD
    Biochemistry; 1980 Jul; 19(14):3208-14. PubMed ID: 7407042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H NMR spectroscopic studies of calcium-binding proteins. 1. Stepwise proteolysis of the C-terminal alpha-helix of a helix-loop-helix metal-binding domain.
    Corson DC; Williams TC; Kay LE; Sykes BD
    Biochemistry; 1986 Apr; 25(7):1817-26. PubMed ID: 3707912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme.
    Tufty RM; Kretsinger RH
    Science; 1975 Jan; 187(4172):167-9. PubMed ID: 1111094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of calcium by parvalbumin fragments.
    Derancourt J; Haiech J; Pechère JF
    Biochim Biophys Acta; 1978 Feb; 532(2):373-5. PubMed ID: 623786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H NMR spectroscopic studies of calcium-binding proteins. 2. Histidine microenvironments in alpha- and beta-parvalbumins as determined by protonation and laser photochemically induced dynamic nuclear polarization effects.
    Williams TC; Corson DC; McCubbin WD; Oikawa K; Kay CM; Sykes BD
    Biochemistry; 1986 Apr; 25(7):1826-34. PubMed ID: 3707913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-equivalence of the CD and EF sites of muscular parvalbumins. A 113Cd NMR study.
    Drakenberg T; Lindman B; Cavé A; Parello J
    FEBS Lett; 1978 Aug; 92(2):346-50. PubMed ID: 29781
    [No Abstract]   [Full Text] [Related]  

  • 19. Terbium replacement of calcium in parvalbumin.
    Sowadski J; Cornick G; Kretsinger RH
    J Mol Biol; 1978 Sep; 124(1):123-32. PubMed ID: 712830
    [No Abstract]   [Full Text] [Related]  

  • 20. Secondary-structure predictions of calcium-binding proteins.
    Argos P
    Biochemistry; 1977 Feb; 16(4):665-72. PubMed ID: 836806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.