BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4475634)

  • 21. Trypsin--pancreatic secretory inhibitor (Kazal inhibitor) interaction. Kinetic and thermodynamic properties.
    Schweitz H; Vincent JP; Lazdunski M
    Biochemistry; 1973 Jul; 12(15):2841-6. PubMed ID: 4737011
    [No Abstract]   [Full Text] [Related]  

  • 22. Assignment of the histidine proton magnetic resonance peaks of soybean trypsin inhibitor (Kunitz) by a differertial deuterium exchange technique.
    Markley JL; Kato I
    Biochemistry; 1975 Jul; 14(14):3234-7. PubMed ID: 238587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nuclear magnetic resonance measurement of hydrogen exchange kinetics of single protons in basic pancreatic trypsin inhibitor.
    Hilton BD; Woodward CK
    Biochemistry; 1978 Aug; 17(16):3325-32. PubMed ID: 28747
    [No Abstract]   [Full Text] [Related]  

  • 24. A 1H nuclear-magnetic-resonance study of the conformation and the molecular dynamics of the glycoprotein cow-colostrum trypsin inhibitor.
    Wagner G; Wütherich K; Tschesche H
    Eur J Biochem; 1978 May; 86(1):67-76. PubMed ID: 658047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor.
    Kim KS; Woodward C
    Biochemistry; 1993 Sep; 32(37):9609-13. PubMed ID: 7690588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of peptide folding nuclei by hydrogen/deuterium exchange-mass spectrometry.
    Li X; Hood RJ; Wedemeyer WJ; Watson JT
    Protein Sci; 2005 Jul; 14(7):1922-8. PubMed ID: 15987911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Determination and comparative analysis of the conformation of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from the data of two-dimensional 1H-NMR spectroscopy].
    Sherman SA; Andrianov AM
    Mol Biol (Mosk); 1985; 19(5):1301-9. PubMed ID: 4079926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction with DNA of the acetylated and non-acetylated polyvalent basic trypsin inhibitor of the Kunitz type.
    Szopa J
    Acta Biochim Pol; 1974; 21(2):151-7. PubMed ID: 4859368
    [No Abstract]   [Full Text] [Related]  

  • 29. The conformational properties of the basic pancreatic trypsin-inhibitor.
    Vincent JP; Chicheportiche R; Lazdunski M
    Eur J Biochem; 1971 Dec; 23(3):401-11. PubMed ID: 5167778
    [No Abstract]   [Full Text] [Related]  

  • 30. The association of anhydrotrypsin with the pancreatic trypsin inhibitors.
    Vincent JP; Peron-Renner M; Pudles J; Lazdunski M
    Biochemistry; 1974 Sep; 13(20):4205-11. PubMed ID: 4472345
    [No Abstract]   [Full Text] [Related]  

  • 31. Investigations of hydrogen-deuterium exchange in -chymotrypsin.
    Kania L; Siemion IZ
    Acta Biochim Pol; 1973; 20(1):15-23. PubMed ID: 4735071
    [No Abstract]   [Full Text] [Related]  

  • 32. Quantitative 250 MHz proton magnetic resonance study of hydrogen-deuterium exchange. Angiotensin II hormone in trifluoroethanol.
    Thiery C; Nabedryk-Viala E; Fermandjian S; Thiery JM
    Biochim Biophys Acta; 1977 Oct; 494(2):293-300. PubMed ID: 911876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An analysis of a structural difference between beef and pork insulin detected by differences in the exchange rates of amide hydrogens as measured by infrared spectroscopy.
    Capaldi RA; Garratt CJ
    Eur J Biochem; 1971 Dec; 23(3):551-6. PubMed ID: 5167780
    [No Abstract]   [Full Text] [Related]  

  • 34. [The internal cavities of pike alpha-parvalbumin probably contain water].
    Tishchenko VM
    Biofizika; 2012; 57(3):395-7. PubMed ID: 22873060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen-tritium exchange kinetics of soybean trypsin inhibitor (Kunitz). Solvent accessibility in the folded conformation.
    Ellis LM; Bloomfield VA; Woodward CK
    Biochemistry; 1975 Jul; 14(15):3413-9. PubMed ID: 238589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly destabilizing mutation, G37A, of the bovine pancreatic trypsin inhibitor retains the average native conformation but greatly increases local flexibility.
    Battiste JL; Li R; Woodward C
    Biochemistry; 2002 Feb; 41(7):2237-45. PubMed ID: 11841215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrotyrosine chelation of nuclear magnetic resonance shift probes in proteins: application to bovine pancreatic trypsin inhibitor.
    Marinetti TD; Snyder GH; Sykes BD
    Biochemistry; 1977 Feb; 16(4):647-53. PubMed ID: 556950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear magnetic resonance studies of trypsin inhibitors. Histidines of virgin and modified soybean trypsin inhibitor (Kunitz).
    Markley JL
    Biochemistry; 1973 Jun; 12(12):2245-50. PubMed ID: 4710581
    [No Abstract]   [Full Text] [Related]  

  • 39. [KINETIC STUDY OF THE MECHANISM OF CATALYTIC ACTION OF PIG AND OX TRYPSIN].
    LAZDUNSKI M
    Bull Soc Chim Biol (Paris); 1965; 47():301-19. PubMed ID: 14337116
    [No Abstract]   [Full Text] [Related]  

  • 40. Deuterium exchange on micrograms of proteins by attenuated total reflection Fourier transform infrared spectroscopy on silver halide fiber.
    Chiacchiera SM; Kosower EM
    Anal Biochem; 1992 Feb; 201(1):43-7. PubMed ID: 1621961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.