These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 4476184)
41. A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia. Reilly MA Vision Res; 2014 Oct; 103():20-31. PubMed ID: 25130408 [TBL] [Abstract][Full Text] [Related]
42. Effect of change in central lens thickness and lens shape on age-related decline in accommodation. Schachar RA J Cataract Refract Surg; 2006 Nov; 32(11):1897-8; author reply 1898. PubMed ID: 17081877 [No Abstract] [Full Text] [Related]
43. Noninvasive imaging and measurement of accommodation using dual-channel SD-OCT. Sun Y; Fan S; Zheng H; Dai C; Ren Q; Zhou C Curr Eye Res; 2014 Jun; 39(6):611-9. PubMed ID: 24206216 [TBL] [Abstract][Full Text] [Related]
44. Sensitivity study of human crystalline lens accommodation. Abolmaali A; Schachar RA; Le T Comput Methods Programs Biomed; 2007 Jan; 85(1):77-90. PubMed ID: 17005291 [TBL] [Abstract][Full Text] [Related]
45. Analysis of human crystalline lens accommodation. Chien CH; Huang T; Schachar RA J Biomech; 2006; 39(4):672-80. PubMed ID: 16023655 [TBL] [Abstract][Full Text] [Related]
46. Proceedings: Some experimental studies of human accommodation and presbyopia. Fisher RF Proc R Soc Med; 1973 Oct; 66(10):1037. PubMed ID: 4759738 [No Abstract] [Full Text] [Related]
47. A geometric model of ocular accommodation. Reilly MA; Ravi N Vision Res; 2010 Feb; 50(3):330-6. PubMed ID: 19963002 [TBL] [Abstract][Full Text] [Related]
48. Magnification and accommodation with phakic intraocular lenses. Langenbucher A; Szentmáry N; Seitz B Ophthalmic Physiol Opt; 2007 May; 27(3):295-302. PubMed ID: 17470243 [TBL] [Abstract][Full Text] [Related]
49. [The posterior lens surface in accomodation]. Siebeck R Ber Zusammenkunft Dtsch Ophthalmol Ges; 1968; 68():270-3. PubMed ID: 5756778 [No Abstract] [Full Text] [Related]
50. Anterior segment changes with age and during accommodation measured with partial coherence interferometry. Tsorbatzoglou A; Németh G; Széll N; Biró Z; Berta A J Cataract Refract Surg; 2007 Sep; 33(9):1597-601. PubMed ID: 17720076 [TBL] [Abstract][Full Text] [Related]
51. Crystalline-lens position and accommodative efficiency. Erickson P Am J Optom Physiol Opt; 1978 Aug; 55(8):571-5. PubMed ID: 742647 [No Abstract] [Full Text] [Related]
52. Clinical measurement of the physiologic position of rest of the crystalline lens. Perkins RB Am J Optom Arch Am Acad Optom; 1971 Apr; 48(4):343-50. PubMed ID: 5279854 [No Abstract] [Full Text] [Related]
53. Birefringence of the human crystalline lens in vivo. Brink HB J Opt Soc Am A; 1991 Nov; 8(11):1788-93. PubMed ID: 1744775 [TBL] [Abstract][Full Text] [Related]
55. Changes in the depth of the anterior chamber and in the radius of curvature of the front surface of the lens during growth. Observations on the rabbit. SORSBY A; STONE J; LEARY GA; SHERIDAN M Br J Ophthalmol; 1960 Aug; 44(8):467-71. PubMed ID: 13832934 [No Abstract] [Full Text] [Related]
56. Is the vitreous necessary for accommodation in man? Fisher RF Br J Ophthalmol; 1983 Mar; 67(3):206. PubMed ID: 6824627 [No Abstract] [Full Text] [Related]
58. The accommodation control system of the human eye. Toates FM Exp Eye Res; 1971 Jan; 11(1):142-3. PubMed ID: 5130512 [No Abstract] [Full Text] [Related]
59. A thin shell deformation analysis of the human lens. O'Neill WD; Doyle JM Vision Res; 1968 Feb; 8(2):193-206. PubMed ID: 5729329 [No Abstract] [Full Text] [Related]
60. The utility of the anterior lens Purkinje image as a measure of accommodation. BIERSDORF WR Am J Optom Arch Am Acad Optom; 1960 Jul; 37():352-62. PubMed ID: 13800599 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]