BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 44771)

  • 1. [Properties of rubredoxin reductase from the alkane-assimilating bacterium Acinetobacter calcoaceticus].
    Claus R; Asperger O; Kleber HP
    Z Allg Mikrobiol; 1979; 19(10):695-704. PubMed ID: 44771
    [No Abstract]   [Full Text] [Related]  

  • 2. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1.
    Tani A; Ishige T; Sakai Y; Kato N
    J Bacteriol; 2001 Mar; 183(5):1819-23. PubMed ID: 11160120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rubredoxin reductase in crude extracts of Acinetobacter calcoaceticus in relation to carbon source and growth phase].
    Claus R; Kleber HP
    Z Allg Mikrobiol; 1982; 22(1):3-15. PubMed ID: 6803449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH and NADPH-viologen reductases from Acinetobacter calcoaceticus.
    Villalobo A; Picorell R; Cárdenas J
    Rev Esp Fisiol; 1979 Mar; 35(1):89-95. PubMed ID: 223203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Isolation and characterization of rubredoxin from Acinetobacter calcoaceticus].
    Aurich H; Sorger D; Asperger O
    Acta Biol Med Ger; 1976; 35(3-4):443-51. PubMed ID: 970050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of NAD(P)H--rubredoxin oxidoreductases in Clostridia.
    Petitdemange H; Blusson H; Gay R
    Anal Biochem; 1981 Sep; 116(2):564-70. PubMed ID: 6274224
    [No Abstract]   [Full Text] [Related]  

  • 7. Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1.
    Haspel G; Ehrt S; Hillen W
    Microbiology (Reading); 1995 Jun; 141 ( Pt 6)():1425-1432. PubMed ID: 7670642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase.
    Coulter ED; Kurtz DM
    Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex.
    Lee HJ; Basran J; Scrutton NS
    Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB, encoding an esterase, and oxyR.
    Geissdörfer W; Kok RG; Ratajczak A; Hellingwerf KJ; Hillen W
    J Bacteriol; 1999 Jul; 181(14):4292-8. PubMed ID: 10400587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa.
    Hagelueken G; Wiehlmann L; Adams TM; Kolmar H; Heinz DW; Tümmler B; Schubert WD
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12276-81. PubMed ID: 17636129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6.
    Fujii T; Narikawa T; Takeda K; Kato J
    Biosci Biotechnol Biochem; 2004 Oct; 68(10):2171-7. PubMed ID: 15502364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Quantitative immunological method for determining rubredoxin in crude extracts of Acinetobacter calcoaceticus].
    Claus R; Hädge D; Asperger O; Fiebig H; Kleber HP
    Z Allg Mikrobiol; 1980; 20(2):95-103. PubMed ID: 6246689
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa.
    Smits TH; Witholt B; van Beilen JB
    Antonie Van Leeuwenhoek; 2003; 84(3):193-200. PubMed ID: 14574114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Oxidation of n-tetradecan-1-14C by cell-free extracts from Acinetobacter calcoaceticus].
    Aurich H; Brückner A; Asperger O; Behrends B; Futtig A
    Z Allg Mikrobiol; 1977; 17(3):249-51. PubMed ID: 878503
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL; Kasper CB
    Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of growth phase and carbon source on the content of rubredoxin in Acinetobacter calcoaceticus.
    Claus R; Asperger O; Kleber HP
    Arch Microbiol; 1980 Dec; 128(2):263-5. PubMed ID: 7212930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Isolation and characterization of cell surface layers of Acinetobacter calcoaceticus].
    Aurich H; Sorger H; Müller H
    Z Allg Mikrobiol; 1977; 17(5):333-8. PubMed ID: 930118
    [No Abstract]   [Full Text] [Related]  

  • 19. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles.
    Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ
    FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.