BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 44771)

  • 21. Identification of the gene encoding NADH-rubredoxin oxidoreductase in Clostridium acetobutylicum.
    Guedon E; Petitdemange H
    Biochem Biophys Res Commun; 2001 Jul; 285(2):496-502. PubMed ID: 11444870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alcohol oxidation by Acinetobacter calcoaceticus EB 104--a n-alkane-utilizing and cytochrome P-450-producing strain.
    Jirausch M; Asperger O; Kleber HP
    J Basic Microbiol; 1986; 26(6):351-7. PubMed ID: 3806370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The behaviour of NAD+ and NADH in Acinetobacter calcoaceticus during n-alkane assimilation.
    Aurich H; Seifertová M
    Folia Microbiol (Praha); 1975; 20(2):130-6. PubMed ID: 170172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Cytochrome P-450 and the respiratory activity of Acinetobacter calcoaceticus growing on n-nonane].
    Eremina SS; Asperger O; Kleber HP
    Mikrobiologiia; 1987; 56(5):764-9. PubMed ID: 3448466
    [No Abstract]   [Full Text] [Related]  

  • 27. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa.
    Marín MM; Yuste L; Rojo F
    J Bacteriol; 2003 May; 185(10):3232-7. PubMed ID: 12730186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkane oxidation in Candida tropicalis.
    Gallo M; Bertrand JC; Roche B; Azoulay E
    Biochim Biophys Acta; 1973 Mar; 296(3):624-38. PubMed ID: 4143948
    [No Abstract]   [Full Text] [Related]  

  • 30. [Optimization of culture conditions for Acinetobacter calcoaceticus grown on n-alkanes in a laboratory fermenter].
    Fricke B; Bergmann R; Sorger H; Aurich H
    Z Allg Mikrobiol; 1982; 22(6):365-72. PubMed ID: 7136011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Inhibition of the malic enzyme from Acinetobacter calcoaceticus by NADPH and NADH].
    Kleber HP
    Acta Biol Med Ger; 1975; 34(11-12):1739-43. PubMed ID: 9762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rubredoxin reductase from Alcanivorax borkumensis: expression and characterization.
    Teimoori A; Ahmadian S; Madadkar-Sobhani A; Bambai B
    Biotechnol Prog; 2011; 27(5):1383-9. PubMed ID: 21714118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Oxidation of reduced nicotinamide-adeninedinucleotide in Pseudomonas aeruginosa adaptation to hexane].
    Samoĭlov PM; Erofeeva ZS; Shurukhin IuV; Minkevich IG; Antonovskiĭ VL
    Mikrobiologiia; 1973; 42(2):396-402. PubMed ID: 4151421
    [No Abstract]   [Full Text] [Related]  

  • 34. New enzymatic pathways for the reduction of reactive oxygen species in Entamoeba histolytica.
    Cabeza MS; Guerrero SA; Iglesias AA; Arias DG
    Biochim Biophys Acta; 2015 Jun; 1850(6):1233-44. PubMed ID: 25725270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rubredoxin from the green sulfur bacterium Chlorobaculum tepidum donates a redox equivalent to the flavodiiron protein in an NAD(P)H dependent manner via ferredoxin-NAD(P)
    Ittarat W; Sato T; Kitashima M; Sakurai H; Inoue K; Seo D
    Arch Microbiol; 2021 Mar; 203(2):799-808. PubMed ID: 33051772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rubredoxin acts as an electron donor for neelaredoxin in Archaeoglobus fulgidus.
    Rodrigues JV; Abreu IA; Saraiva LM; Teixeira M
    Biochem Biophys Res Commun; 2005 Apr; 329(4):1300-5. PubMed ID: 15766568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of hyperoxia on oxidized and reduced NAD and NADP concentrations in Escherichia coli.
    Brunker RL; Brown OR
    Microbios; 1971 Dec; 4(15):193-203. PubMed ID: 4147907
    [No Abstract]   [Full Text] [Related]  

  • 38. Coupling of mitochondrial NADPH : NAD transhydrogenase with electron transport in adult Hymenolepis diminuta.
    Fioravanti CF
    J Parasitol; 1981 Dec; 67(6):823-31. PubMed ID: 7328455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lucigenin as a substrate of microsomal NAD(P)H-oxidoreductases.
    Schepetkin IA
    Biochemistry (Mosc); 1999 Jan; 64(1):25-32. PubMed ID: 9986909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Cytochrome composition of Acinetobacter calcoaceticus].
    Asperger O; Kleber HP; Aurich H
    Acta Biol Med Ger; 1978; 37(2):191-8. PubMed ID: 706933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.