These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 4477144)

  • 1. [Effect of lipids on liver microsomal membranes. (3) Studies on the effect of lipid micelles on the reconstituted systems of NADH-cytochrome c reductase (author's transl)].
    Ozaki S
    Hokkaido Igaku Zasshi; 1974 Jul; 49(4):347-55. PubMed ID: 4477144
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of lipids on liver microsomal membranes. (1) Studies of a relationship between delipidation of liver microsomes with the various organic solvents and cytochrome c reductase activity linked to reduced nicotinamide adenine dinucleotide (author's transl)].
    Ozaki S
    Hokkaido Igaku Zasshi; 1974 Jul; 49(4):326-36. PubMed ID: 4156348
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effect of lipids on liver microsomal membranes. (2) Studies on the interaction between extra-cytochrome b5 and microsomal membranes (author's transl)].
    Ozaki S
    Hokkaido Igaku Zasshi; 1974 Jul; 49(4):337-46. PubMed ID: 4477143
    [No Abstract]   [Full Text] [Related]  

  • 4. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Changes in NADH-cytochrome c reductase activity following phenobarbital treatment.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):61-6. PubMed ID: 4364831
    [No Abstract]   [Full Text] [Related]  

  • 5. [Monodehydro-L(plus)-ascorbate reducing systems in differently prepared pig liver microsomes (author's transl)].
    Weber H; Weis W; Wolf B
    Hoppe Seylers Z Physiol Chem; 1974 May; 355(5):595-9. PubMed ID: 4154897
    [No Abstract]   [Full Text] [Related]  

  • 6. [Effect of thyroxine on the NADH cytochrome c reductase activity of microsomes and outer mitochondrial membrane of rat liver depending on age].
    Lemeshko VV
    Biokhimiia; 1981 Oct; 46(10):1807-14. PubMed ID: 7306601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Resolution of the complex by triton X-100.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):55-60. PubMed ID: 4364830
    [No Abstract]   [Full Text] [Related]  

  • 8. [Inactivation of microsomal proteins by lysosomes (author's transl)].
    Betz H; Gratzl M; Remmer H
    Hoppe Seylers Z Physiol Chem; 1973 May; 354(5):567-75. PubMed ID: 4154275
    [No Abstract]   [Full Text] [Related]  

  • 9. [Interaction between cytochrome P-448 and NADP-cytochrome P-450 reductase in reconstituted microsomal membranes].
    Grishanova AIu; Mishin VM; Liakhovich VV
    Biokhimiia; 1985 Mar; 50(3):369-74. PubMed ID: 3995100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [NADH-dependent electron transfer system of liver microsomes. The oxidation-reduction mechanism of cytochrome b5 (author's transl)].
    Onishi T
    Hokkaido Igaku Zasshi; 1974 Sep; 49(5):397-410. PubMed ID: 4376123
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation.
    Miura A; Tampo Y; Yonaha M
    Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsomal NADH-cytochrome b5 reductase of bovine brain: purification and properties.
    Tamura M; Yubisui T; Takeshita M
    J Biochem; 1983 Nov; 94(5):1547-55. PubMed ID: 6654871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Carrier-bound cytochrome b5 as substrate for the ascorbate: ferricytochrome-b5-oxidoreductase from mammalian liver microsomes (author's transl)].
    Scherer G; Weber H; Weis W
    Hoppe Seylers Z Physiol Chem; 1974 Nov; 355(11):1350-4. PubMed ID: 4461638
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of high salt concentrations upon cytochrome C, cytochrome B5, and iron-EDTA reductase activities of liver microsomal NADPH-cytochrome C reductase.
    Bilimoria MH; Kamin H
    Ann N Y Acad Sci; 1973; 212():428-48. PubMed ID: 4217577
    [No Abstract]   [Full Text] [Related]  

  • 16. [Reconstitution of the monooxygenase system in a solution and in an immobilized phospholipid layer].
    Budennaia TIu; Dobrynina OV; Korneva EN; Lazarevich VG; Kuznetsova GP
    Biokhimiia; 1983 Dec; 48(12):2002-8. PubMed ID: 6423000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of cytochrome b5 to membranes of isolated subcellular organelles from rat liver.
    Remacle J
    J Cell Biol; 1978 Nov; 79(2 Pt 1):291-313. PubMed ID: 721892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and partial characterization of microsomal NADH-cytochrome b5 reductase from higher plant Catharanthus roseus.
    Madyastha KM; Chary NK; Holla R; Karegowdar TB
    Biochem Biophys Res Commun; 1993 Dec; 197(2):518-22. PubMed ID: 8267585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes.
    Tampo Y; Yonaha M
    Arch Biochem Biophys; 1996 Oct; 334(1):163-74. PubMed ID: 8837752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes.
    Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.