These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Stability analysis of predator-prey models via the Liapunov method. Gatio M; Rinaldi S Bull Math Biol; 1977; 39(3):339-47. PubMed ID: 558028 [No Abstract] [Full Text] [Related]
4. Ecosystems with three species: one-prey-and-two-predator system in an exactly solvable model. Pande LK J Theor Biol; 1978 Oct; 74(4):591-8. PubMed ID: 732347 [No Abstract] [Full Text] [Related]
5. Age structure and stability in models of prey-predator systems. Smith RH; Mead R Theor Popul Biol; 1974 Dec; 6(3):308-22. PubMed ID: 4477674 [No Abstract] [Full Text] [Related]
6. On a diffusive prey--predator model which exhibits patchiness. Mimura M; Murray JD J Theor Biol; 1978 Dec; 75(3):249-62. PubMed ID: 745441 [No Abstract] [Full Text] [Related]
7. Predator-prey interactions in natural communities. Rapport DJ J Theor Biol; 1975 May; 51(1):169-80. PubMed ID: 1170465 [No Abstract] [Full Text] [Related]
8. A qualitative method for analysis of prey-predator systems under enrichment. Assimacopoulos D; Evans FJ J Theor Biol; 1979 Oct; 80(4):467-84. PubMed ID: 542005 [No Abstract] [Full Text] [Related]
9. Averaging methods in predator-prey systems and related biological models. Lin J; Kahn PB J Theor Biol; 1976 Mar; 57(1):73-102. PubMed ID: 957660 [No Abstract] [Full Text] [Related]
10. The effect of spatial heterogeneity on the persistence of predator-prey interactions. Hilborn R Theor Popul Biol; 1975 Dec; 8(3):346-55. PubMed ID: 1220045 [No Abstract] [Full Text] [Related]
11. Predator-prey-subsidy population dynamics on stepping-stone domains. Shen L; Van Gorder RA J Theor Biol; 2017 May; 420():241-258. PubMed ID: 28322876 [TBL] [Abstract][Full Text] [Related]
12. A semi-Markovian model for predator-prey interactions. Rao C; Kshirsagar AM Biometrics; 1978 Dec; 34(4):611-9. PubMed ID: 749946 [TBL] [Abstract][Full Text] [Related]
13. Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms. Zeigler BP J Theor Biol; 1977 Aug; 67(4):687-713. PubMed ID: 904340 [No Abstract] [Full Text] [Related]
14. Spatial processes can determine the relationship between prey encounter rate and prey density. Travis JM; Palmer SC Biol Lett; 2005 Jun; 1(2):136-8. PubMed ID: 17148148 [TBL] [Abstract][Full Text] [Related]
15. Two predator-prey difference equations considering delayed population growth and starvation. Heller R J Theor Biol; 1978 Feb; 70(4):401-13. PubMed ID: 564993 [No Abstract] [Full Text] [Related]
19. Complexity-stability relationship of two-prey-one-predator species system model: local and global stability. Fujii K J Theor Biol; 1977 Dec; 69(4):613-23. PubMed ID: 564430 [No Abstract] [Full Text] [Related]
20. Foraging success of juvenile pike Esox lucius depends on visual conditions and prey pigmentation. Jönsson M; Hylander S; Ranåker L; Nilsson PA; Brönmark C J Fish Biol; 2011 Jul; 79(1):290-7. PubMed ID: 21722125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]