These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 4478362)

  • 1. [Proceedings: Development of visual cells and optic nerve of the lateral eye of the horseshoe crab].
    Ueki K
    Nihon Seirigaku Zasshi; 1974 Sep; 36(8-9):298. PubMed ID: 4478362
    [No Abstract]   [Full Text] [Related]  

  • 2. Neuroanatomy of the visual afferents in the horseshoe crab (Limulus polyphemus).
    Chamberlain SC; Barlow RB
    J Comp Neurol; 1980 Jul; 192(2):387-400. PubMed ID: 7400403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Proceedings: 342. Further study on the structural development of the lateral eye of the Japanese horseshoe crab (author's transl)].
    Ueki K
    Nihon Seirigaku Zasshi; 1973; 35(8):526. PubMed ID: 4799906
    [No Abstract]   [Full Text] [Related]  

  • 4. The distribution of fibres in the optic tract after contralateral translocation of an eye in Xenopus.
    Taylor JS; Willshaw DJ; Gaze RM
    J Embryol Exp Morphol; 1985 Feb; 85():225-38. PubMed ID: 3989450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual development.
    Suchoff IB
    J Am Optom Assoc; 1979 Oct; 50(10):1129-35. PubMed ID: 385694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiographic study in Xenopus.
    Straznicky C; Gaze RM; Horder TJ
    J Embryol Exp Morphol; 1979 Apr; 50():253-67. PubMed ID: 458360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central projections of Limulus photoreceptor cells revealed by a photoreceptor-specific monoclonal antibody.
    Calman BG; Lauerman MA; Andrews AW; Schmidt M; Battelle BA
    J Comp Neurol; 1991 Nov; 313(4):553-62. PubMed ID: 1783680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The visual system of the horseshoe crab Limulus polyphemus.
    Fahrenbach WH
    Int Rev Cytol; 1975; 41():285-349. PubMed ID: 1093990
    [No Abstract]   [Full Text] [Related]  

  • 10. Type XIII collagen is widely expressed in the adult and developing human eye and accentuated in the ciliary muscle, the optic nerve and the neural retina.
    Sandberg-Lall M; Hägg PO; Wahlström I; Pihlajaniemi T
    Exp Eye Res; 2000 Apr; 70(4):401-10. PubMed ID: 10865988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the optic nerve of the rat.
    Kuwabara T
    Invest Ophthalmol; 1975 Oct; 14(10):732-45. PubMed ID: 1184307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations on the early development of the optic nerve and tract of the mouse.
    Colello RJ; Guillery RW
    J Comp Neurol; 1992 Mar; 317(4):357-78. PubMed ID: 1578002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of linearly increasing and decreasing current on the optic nerve discharge of lateral eye of horseshoe crab.
    TANAKA I; YAMANAKA T
    J Cell Comp Physiol; 1960 Dec; 56():161-4. PubMed ID: 13775135
    [No Abstract]   [Full Text] [Related]  

  • 14. Postnatal development of primary visual projections in the tammar wallaby (Macropus eugenii).
    Wye-Dvorak J
    J Comp Neurol; 1984 Oct; 228(4):491-508. PubMed ID: 6490967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoreactivity in Limulus. II. Studies of serotoninlike immunoreactivity, endogenous serotonin, and serotonin synthesis in the brain and lateral eye.
    Chamberlain SC; Pepper J; Battelle BA; Wyse GA; Lewandowski TJ
    J Comp Neurol; 1986 Sep; 251(3):363-75. PubMed ID: 2429996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aberrant retino-retinal projection during optic nerve regeneration in the frog. I. Time course of formation and cells of origin.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):605-20. PubMed ID: 6970756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proposal regarding the significance of simple mechanical events, such as the development of the choroid fissure, in the organization of central visual projections [proceedings].
    Bunt SM; Horder TJ
    J Physiol; 1977 Oct; 272(1):10P-11P. PubMed ID: 592114
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The postnatal development of the optic nerve of a reptile (Vipera aspis): A quantitative ultrastructural study.
    Bennis M; Repérant J; Ward R; Rio JP; M'hamed SB; Jay B
    Anat Embryol (Berl); 2006 Nov; 211(6):691-705. PubMed ID: 17136565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.