These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 447849)

  • 1. Lactic acidosis as a result of iron deficiency.
    Finch CA; Gollnick PD; Hlastala MP; Miller LR; Dillmann E; Mackler B
    J Clin Invest; 1979 Jul; 64(1):129-37. PubMed ID: 447849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron deficiency anemia: mitochondrial alpha-glycerophosphate dehydrogenase in guinea pig skeletal muscle.
    Macdonald VW; Charache S; Hathaway PJ
    J Lab Clin Med; 1985 Jan; 105(1):11-8. PubMed ID: 2981941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic threshold: review of the concept and directions for future research.
    Brooks GA
    Med Sci Sports Exerc; 1985 Feb; 17(1):22-34. PubMed ID: 3884959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction.
    Finch CA; Miller LR; Inamdar AR; Person R; Seiler K; Mackler B
    J Clin Invest; 1976 Aug; 58(2):447-53. PubMed ID: 956378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between respiratory exchange ratio, plasma lactate and muscle lactate concentrations in exercising horses using a valved gas collection system.
    Gauvreau GM; Young SS; Staempfli H; McCutcheon LJ; Wilson BA; McDonell WN
    Can J Vet Res; 1996 Jul; 60(3):161-71. PubMed ID: 8809378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic threshold: review of the concept and directions for future research.
    Davis JA
    Med Sci Sports Exerc; 1985 Feb; 17(1):6-21. PubMed ID: 3884961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH and lactate on glucose uptake by red and white skeletal muscle in vitro.
    Gorski J; Sikorska J
    Acta Physiol Pol; 1977; 28(5):441-4. PubMed ID: 22986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical changes during the muscle work. I. Production of lactate, pyruvate, glykogen and activity of the lacticodehydrogenase during the load in rats.
    Böswart J; Krausová M; Malkovská M
    Acta Univ Carol Med (Praha); 1977; 23(5-6):331-42. PubMed ID: 756683
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of acidosis on rat muscle metabolism and performance during heavy exercise.
    Spriet LL; Matsos CG; Peters SJ; Heigenhauser GJ; Jones NL
    Am J Physiol; 1985 Mar; 248(3 Pt 1):C337-47. PubMed ID: 3919592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of iron deficiency on endurance and muscle enzyme activity in man.
    Celsing F; Blomstrand E; Werner B; Pihlstedt P; Ekblom B
    Med Sci Sports Exerc; 1986 Apr; 18(2):156-61. PubMed ID: 3702642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship of respiratory failure to the oxygen consumption of, lactate production by, and distribution of blood flow among respiratory muscles during increasing inspiratory resistance.
    Robertson CH; Foster GH; Johnson RL
    J Clin Invest; 1977 Jan; 59(1):31-42. PubMed ID: 830663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Sus scrofa following repeated TASER exposures.
    Jauchem JR; Sherry CJ; Fines DA; Cook MC
    Forensic Sci Int; 2006 Aug; 161(1):20-30. PubMed ID: 16289999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between iron status and perceived exertion in trained and untrained women.
    Spodaryk K
    J Physiol Pharmacol; 1993 Dec; 44(4):415-23. PubMed ID: 8123889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue.
    Madsen PL; Cruz NF; Sokoloff L; Dienel GA
    J Cereb Blood Flow Metab; 1999 Apr; 19(4):393-400. PubMed ID: 10197509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and biochemical effects of iron deficiency on rat skeletal muscle.
    McLane JA; Fell RD; McKay RH; Winder WW; Brown EB; Holloszy JO
    Am J Physiol; 1981 Jul; 241(1):C47-54. PubMed ID: 6264804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactic acidosis.
    Ritz E; Heidland A
    Clin Nephrol; 1977 May; 7(5):231-40. PubMed ID: 872461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and biochemical correlates of increased work in trained iron-deficient rats.
    Willis WT; Dallman PR; Brooks GA
    J Appl Physiol (1985); 1988 Jul; 65(1):256-63. PubMed ID: 3403467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased glucose dependence in resting, iron-deficient rats.
    Brooks GA; Henderson SA; Dallman PR
    Am J Physiol; 1987 Oct; 253(4 Pt 1):E461-6. PubMed ID: 3661703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing effects of anemia and muscle iron deficiency on exercise bioenergetics in the rat.
    Davies KJ; Donovan CM; Refino CJ; Brooks GA; Packer L; Dallman PR
    Am J Physiol; 1984 Jun; 246(6 Pt 1):E535-43. PubMed ID: 6742115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.